MyoD
From Wikipedia, the free encyclopedia
|
Myogenic differentiation 1
|
||||||||||||||
| PDB rendering based on 1mdy. | ||||||||||||||
| Available structures: 1mdy | ||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | MYOD1; PUM; MYF3; MYOD | |||||||||||||
| External IDs | OMIM: 159970 MGI: 97275 HomoloGene: 7857 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 4654 | 17927 | ||||||||||||
| Ensembl | ENSG00000129152 | ENSMUSG00000009471 | ||||||||||||
| Uniprot | P15172 | Q8C6B1 | ||||||||||||
| Refseq | NM_002478 (mRNA) NP_002469 (protein) |
NM_010866 (mRNA) NP_034996 (protein) |
||||||||||||
| Location | Chr 11: 17.7 - 17.7 Mb | Chr 7: 46.24 - 46.25 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
MyoD is a protein with a key role in regulating muscle differentiation. MyoD belongs to a family of proteins known as myogenic regulatory factors (MRFs).[1] These bHLH (basic helix loop helix) transcription factors act sequentially in myogenic differentiation. MRF family members include MyoD, Myf5, myogenin, and MRF4 (Myf6).
MyoD is one of the earliest markers of myogenic commitment. MyoD is expressed in activated satellite cells, but not in quiescent satellite cells. Although MyoD marks myoblast commitment, muscle development is not dramatically ablated in mouse mutants lacking the MyoD gene. This is likely to be due to functional redunancy from Myf5.
Contents |
[edit] Functions of MyoD
The function of MyoD in development is to commit mesoderm cells to a skeletal lineage, and then to regulate that process. MyoD may also play a role in regulating muscle repair. MyoD mRNA levels are also reported to be elevated in aging skeletal muscle.
One of the main actions of MyoD is to remove cells from the cell cycle (halt proliferation) by enhancing the transcription of p21. MyoD is inhibited by cyclin dependent kinases (CDKs). CDKs are in turn inhibited by p21. Thus MyoD enhances its own activity in the cell.
[edit] References
[edit] Further reading
- Weintraub H, Davis R, Tapscott S, et al. (1991). "The myoD gene family: nodal point during specification of the muscle cell lineage.". Science 251 (4995): 761-6. doi:. PMID 1846704.
- Tapscott SJ, Weintraub H (1991). "MyoD and the regulation of myogenesis by helix-loop-helix proteins.". J. Clin. Invest. 87 (4): 1133-8. PMID 1849142.
- Olson EN (1991). "MyoD family: a paradigm for development?". Genes Dev. 4 (9): 1454-61. PMID 2253873.
- Goldman PS, Tran VK, Goodman RH (1997). "The multifunctional role of the co-activator CBP in transcriptional regulation.". Recent Prog. Horm. Res. 52: 103-19; discussion 119-20. PMID 9238849.
- Puri PL, Sartorelli V (2000). "Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications.". J. Cell. Physiol. 185 (2): 155-73. doi:. PMID 11025438.
- McKinsey TA, Zhang CL, Olson EN (2001). "Control of muscle development by dueling HATs and HDACs.". Curr. Opin. Genet. Dev. 11 (5): 497-504. doi:. PMID 11532390.
- Berkes CA, Tapscott SJ (2006). "MyoD and the transcriptional control of myogenesis.". Semin. Cell Dev. Biol. 16 (4-5): 585-95. doi:. PMID 16099183.
- Bengal E, Ransone L, Scharfmann R, et al. (1992). "Functional antagonism between c-Jun and MyoD proteins: a direct physical association.". Cell 68 (3): 507-19. doi:. PMID 1310896.
- Walsh K, Gualberto A (1992). "MyoD binds to the guanine tetrad nucleic acid structure.". J. Biol. Chem. 267 (19): 13714-8. PMID 1320026.
- Li L, Zhou J, James G, et al. (1993). "FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains.". Cell 71 (7): 1181-94. PMID 1335366.
- Shaknovich R, Shue G, Kohtz DS (1992). "Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84).". Mol. Cell. Biol. 12 (11): 5059-68. PMID 1406681.
- Lassar AB, Davis RL, Wright WE, et al. (1991). "Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo.". Cell 66 (2): 305-15. doi:. PMID 1649701.
- Pearson-White SH (1991). "Human MyoD: cDNA and deduced amino acid sequence.". Nucleic Acids Res. 19 (5): 1148. doi:. PMID 1850513.
- Gessler M, Hameister H, Henry I, et al. (1991). "The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome.". Hum. Genet. 86 (2): 135-8. PMID 2176177.
- Scrable HJ, Johnson DK, Rinchik EM, Cavenee WK (1990). "Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11.". Proc. Natl. Acad. Sci. U.S.A. 87 (6): 2182-6. doi:. PMID 2315312.
- Lassar AB, Buskin JN, Lockshon D, et al. (1989). "MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer.". Cell 58 (5): 823-31. doi:. PMID 2550138.
- Braun T, Bober E, Buschhausen-Denker G, et al. (1990). "Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products.". EMBO J. 8 (12): 3617-25. PMID 2583111.
[edit] External links
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

