Metabotropic glutamate receptor
From Wikipedia, the free encyclopedia
The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor which are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs.[1] Like all glutamate receptors, mGluRs bind to glutamate, an amino acid that functions as an excitatory neurotransmitter.
Contents |
[edit] Function and structure
The mGluRs perform a variety of functions in the central and peripheral nervous systems: for example, they are involved in learning, memory, anxiety, and the perception of pain.[2] They are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum,[3] and the cerebral cortex, as well as other parts of the brain and in peripheral tissues.[4]
Like other metabotropic receptors, mGluRs have seven transmembrane domains that span the cell membrane.[5] Unlike ionotropic receptors, metabotropic receptors are not directly linked to ion channels, but may affect them by activating biochemical cascades. In addition to producing excitatory and inhibitory postsynaptic potentials, mGluRs serve to modulate the function of other receptors (such as NMDA receptors), changing the synapse's excitability.[1][4][5][6]
Metabotropic glutamate receptors can cause Ca2+ to be released from intracellular structures in which it is stored, such as the endoplasmic reticulum (ER). Activation of mGluRs causes the production of Inositol trisphosphate, which activates receptors on the ER that open Ca2+-permeable channels.
[edit] Classification
Eight different types of mGluRs, labeled mGluR1 to mGluR8 (GRM1 to GRM8), are divided into groups I, II, and III.[1][3][4][6] Receptor types are grouped based on receptor structure and physiological activity.[2] The mGluRs are further divided into subtypes, such as mGluR7a and mGluR7b.
[edit] Overview
| Family | Receptors [7][8] | Gene | Mechanism[7] |
|---|---|---|---|
| Group I | mGluR1 | GRM1 | Gq, ↑Na+,[4] ↑K+,[4] ↓glutamate[6] |
| mGluR5 | GRM5 | Gq, ↑Na+,[4] ↑K+,[4] ↓glutamate[6] | |
| Group II | mGluR2 | GRM2 | Gi/G0 |
| mGluR3 | GRM3 | Gi/G0 | |
| Group III | mGluR4 | GRM4 | Gi/G0 |
| mGluR6 | GRM6 | Gi/G0 | |
| mGluR7 | GRM7 | Gi/G0 | |
| mGluR8 | GRM8 | Gi/G0 |
[edit] Group I
The mGluRs in group I, including mGluR1 and mGluR5, are stimulated most strongly by the excitatory amino acid analog L-quisqualic acid.[4][9] Stimulating the receptors causes an associated phospholipase C molecule to hydrolyze phosphoinositide phospholipids in the cell's plasma membrane.[1][4][6]
These receptors are also associated with Na+ and K+ channels.[4] Their action can be excitatory, increasing conductance, causing more glutamate to be released from the presynaptic cell, but they also increase inhibitory postsynaptic potentials, or IPSPs.[4] They can also inhibit glutamate release and can modulate voltage-dependent calcium channels.[6]
Group I mGluRs, but not other groups, are activated by 3,5-dihydroxyphenylglycine (DHPG),[10] a fact which is useful to experimenters because it allows them to isolate and identify them.
[edit] Group II & Group III
The receptors in group II, including mGluRs 2 and 3, and group III, including mGluRs 4, 6, 7, and 8, (with some exceptions) prevent the formation of cyclic adenosine monophosphate, or cAMP, by activating a G protein that inhibits the enzyme adenylyl cyclase, which forms cAMP from ATP.[1][3][4][11] These receptors are involved in presynaptic inhibition,[6] and do not appear to affect postsynaptic membrane potential by themselves. Receptors in groups II and III reduce the activity of postsynaptic potentials, both excitatory and inhibitory, in the cortex.[4]
The chemicals 2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) and eglumegad activate only group II mGluRs, while 2-amino-4-phosphonobutyrate (L-AP4) activates only group III mGluRs.[10]
LY-341,495 is a drug which acts as a selective antagonist blocking both of the group II metabotropic glutamate receptors, mGluR2 and mGluR3.
[edit] Localization
Different types of mGluRs are distributed differently in cells. For example, one study found that Group I mGluRs are mostly located on postsynaptic parts of cells while groups II and III are mostly located on presynaptic elements,[10] though they have been found on both pre- and postsynaptic membranes.[6]
Also, different mGluR subtypes are found predominantly in different parts of the body. For exaple, mGluR4 is located only in the brain, in locations such as the thalamus, hypothalamus and caudate nucleus.[12] All mGluRs except mGluR6 are thought to exist in the hippocampus and entorhinal cortex.[10]
[edit] Roles
It is thought that mGluRs play a role in a variety of different functions.
[edit] Modulation of other receptors
Metabotropic glutamate receptors are known to act as modulators of (affect the activity of) other receptors. For example, group I mGluRs are known to increase the activity of N-methyl-D-aspartate receptors,[13][14] a type of ion channel-linked receptor that is central in a neurotoxic process called excitotoxicity. Proteins called PDZ proteins frequently anchor mGluRs near enough to NMDARs to modulate their activity.[15]
It has been suggested that mGluRs may act as regulators of neurons' vulnerability to excitotoxicity (a deadly neurochemical process involving glutamate receptor overactivation) through their modulation of NMDARs, the receptor most involved in that process.[16] Excessive amounts of N-methyl-D-aspartate, an agonist for NMDARs, has been found to cause more damage to neurons in the presence of group I mGluR agonists.[17] On the other hand, agonists of group II[18] and III mGluRs reduce NMDAR activity.[19]
Group II[20] and III[17] mGluRs tend to protect neurons from excitotoxicity,[19][21][22] possibly by reducing the activity of NMDARs.
Metabotropic glutamate receptors are also thought to affect dopaminergic and adrenergic neurotransmission.[23]
[edit] Role in plasticity
Like other glutamate receptors, mGluRs have been shown to be involved in synaptic plasticity.[1][6][24]
They participate in long term potentiation and long term depression, and they are removed from the synaptic membrane in response to agonist binding.[11]
[edit] Roles in disease
Since metabotropic glutamate receptors are involved in a variety of functions, abnormalities in their expression can contribute to disease. For example, studies with mutant mice have suggested that mutations in expression of mGluR1 may be involved in the development of certain types of cancer.[25] In addition, manipulating mGluRs can be useful in treating some conditions. For example, clinical trial suggested that an mGlu2/3 agonist, LY354740, was effective in the treatment of generalized anxiety disorder.[26] Also, some researchers have suggested that activation of mGluR4 could be used as a treatment for Parkinson's disease.[27]
There is also growing evidence that group II metabotropic glutamate receptor agonists may play a role in the treatment of schizophrenia. Schizophrenia is associated with deficits in cortical inhibitory interneurons that release GABA and synaptic abnormalities associated with deficits in NMDA receptor function.[28] These inhibitory deficits may impair cortical function via cortical disinhibition and asynchrony.[29] An mGluR2/3 agonist was shown to attenuate physiologic and cognitive abnormalities in the animal and human studies of NMDA receptor antagonist and serotonergic hallucinogen effects,[30][31][32][33] supporting the subsequent clinical evidence of efficacy for an mGluR2/3 agonist in the treatment of schizophrenia.[34]
[edit] History
It was first suggested that mGluRs might exist in 1985, after it was noted that glutamate could stimulate phospholipase C through the activation of a receptor that did not belong to any of the ionotropic glutamate receptor families (NMDA, AMPA, or Kainate receptors.[35] The suspicion that mGluRs existed was confirmed in 1987, and in 1991 the first mGluR was cloned.[35]
[edit] References
- ^ a b c d e f Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P, Pisani A (2005). "Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons". Neuropharmacology 49 Suppl 1: 104–13. doi:. PMID 16005029.
- ^ a b Ohashi H, Maruyama T, Higashi-Matsumoto H, Nomoto T, Nishimura S, Takeuchi Y (2002). "A novel binding assay for metabotropic glutamate receptors using [3H L-quisqualic acid and recombinant receptors]" (subscription required). Z. Naturforsch., C, J. Biosci. 57 (3-4): 348–55. PMID 12064739.
- ^ a b c Hinoi E, Ogita K, Takeuchi Y, Ohashi H, Maruyama T, Yoneda Y (2001). "Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues". Neurochem. Int. 38 (3): 277–85. doi:. PMID 11099787.
- ^ a b c d e f g h i j k l m Chu Z, Hablitz JJ (2000). "Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons". Brain Res. 879 (1-2): 88–92. doi:. PMID 11011009.
- ^ a b Platt SR (2007). "The role of glutamate in central nervous system health and disease--a review". Vet. J. 173 (2): 278–86. doi:. PMID 16376594.
- ^ a b c d e f g h i Endoh T (2004). "Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius". Brain Res. 1024 (1-2): 212–24. doi:. PMID 15451384.
- ^ a b If not otherwise specified in table:TABLE 1 Classification of the metabotropic glutamate (mGlu) receptors From the following article:
- ^ Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005). "Metabotropic glutamate receptors as novel targets for anxiety and stress disorders". Nat Rev Drug Discov 4 (2): 131–44. doi:. PMID 15665858.
- ^ Bates B, Xie Y, Taylor N, Johnson J, Wu L, Kwak S, Blatcher M, Gulukota K, Paulsen JE (2002). "Characterization of mGluR5R, a novel, metabotropic glutamate receptor 5-related gene". Brain Res. Mol. Brain Res. 109 (1-2): 18–33. doi:. PMID 12531512.
- ^ a b c d Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997). "Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus" (abstract). J. Neurosci. 17 (19): 7503–22. PMID 9295396.
- ^ a b MRC (Medical Research Council), Glutamate receptors: Structures and functions., University of Bristol Centre for Synaptic Plasticity (2003). Retrieved January 20, 2008.
- ^ InterPro. InterPro: IPR001786 Metabotropic glutamate receptor 4. Retrieved on January 20, 2008.
- ^ Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001). "mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C". Neuropharmacology 40 (7): 856–65. doi:. PMID 11378156.
- ^ Lea PM, Custer SJ, Vicini S, Faden AI (2002). "Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current". Pharmacol. Biochem. Behav. 73 (2): 287–98. doi:. PMID 12117582.
- ^ Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999). "Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins". Neuron 23 (3): 583–92. doi:. PMID 10433269.
- ^ Baskys A, Blaabjerg M (2005). "Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies". J. Neurol. Sci. 229-230: 201–9. doi:. PMID 15760640.
- ^ a b Bruno V, Copani A, Knöpfel T, Kuhn R, Casabona G, Dell'Albani P, Condorelli DF, Nicoletti F (1995). "Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells". Neuropharmacology 34 (8): 1089–98. doi:. PMID 8532158.
- ^ Buisson A, Yu SP, Choi DW (1996). "DCG-IV selectively attenuates rapidly triggered NMDA-induced neurotoxicity in cortical neurons". Eur. J. Neurosci. 8 (1): 138–43. PMID 8713457.
- ^ a b Ambrosini A, Bresciani L, Fracchia S, Brunello N, Racagni G (1995). "Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro" (abstract). Mol. Pharmacol. 47 (5): 1057–64. PMID 7746273.
- ^ Bruno V, Battaglia G, Copani A, Giffard RG, Raciti G, Raffaele R, Shinozaki H, Nicoletti F (1995). "Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration". Eur. J. Neurosci. 7 (9): 1906–13. PMID 8528465.
- ^ Allen JW, Ivanova SA, Fan L, Espey MG, Basile AS, Faden AI (1999). "Group II metabotropic glutamate receptor activation attenuates traumatic neuronal injury and improves neurological recovery after traumatic brain injury" (abstract). J. Pharmacol. Exp. Ther. 290 (1): 112–20. PMID 10381766.
- ^ Faden AI, Ivanova SA, Yakovlev AG, Mukhin AG (1997). "Neuroprotective effects of group III mGluR in traumatic neuronal injury". J. Neurotrauma 14 (12): 885–95. PMID 9475370.
- ^ Wang J-Q, Brownell A-L (2007). Development of metabotropic glutamate receptor ligands for neuroimaging. Current Medical Imaging Reviews 3 (3): 186-205. Retrieved on January 20, 2008.
- ^ Baskys A, Fang L, Bayazitov I (2005). "Activation of neuroprotective pathways by metabotropic group I glutamate receptors: a potential target for drug discovery?". Ann. N. Y. Acad. Sci. 1053: 55–73. doi:. PMID 16179509.
- ^ Namkoong J, Shin SS, Lee HJ, Marín YE, Wall BA, Goydos JS, Chen S (2007). "Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma". Cancer Res. 67 (5): 2298–305. doi:. PMID 17332361.
- ^ Dunayevich E, Erickson J, Levine L, Landbloom R, Schoepp DD, Tollefson GD (2007). "Efficacy and Tolerability of an mGlu2/3 Agonist in the Treatment of Generalized Anxiety Disorder". Neuropsychopharmacology. doi:. PMID 17712352.
- ^ Marino MJ, Williams DL, O'Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003). "Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment". Proc. Natl. Acad. Sci. U.S.A. 100 (23): 13668–73. doi:. PMID 14593202.
- ^ Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003). "NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development". Psychopharmacology (Berl.) 169 (3-4): 215–33. doi:. PMID 12955285.
- ^ Ford JM, Krystal JH, Mathalon DH (2007). "Neural synchrony in schizophrenia: from networks to new treatments". Schizophr Bull 33 (4): 848–52. doi:. PMID 17567628.
- ^ Homayoun H, Jackson ME, Moghaddam B (2005). "Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats". J. Neurophysiol. 93 (4): 1989–2001. doi:. PMID 15590730.
- ^ Moghaddam B, Adams BW (1998). "Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats". Science 281 (5381): 1349–52. PMID 9721099.
- ^ Krystal JH, Abi-Saab W, Perry E, D'Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005). "Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects". Psychopharmacology (Berl.) 179 (1): 303–9. doi:. PMID 15309376.
- ^ Aghajanian GK, Marek GJ (2000). "Serotonin model of schizophrenia: emerging role of glutamate mechanisms". Brain Res. Brain Res. Rev. 31 (2-3): 302–12. doi:. PMID 10719157.
- ^ Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007). "Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial". Nat. Med. 13 (9): 1102–7. doi:. PMID 17767166.
- ^ a b Temple MD, O'Leary DM, Faden AI (2000). "The role of glutamate receptors in the pathophysiology of traumatic central nervous system injury. Chapter 4.", in Newcomb, Jennifer K.; Miller, Leonard S.; Hayes, Ronald L. eds.: Head trauma: basic, preclinical, and clinical directions. New York: Wiley-Liss, 87-113. ISBN 0-471-36015-5.

