Almost perfect number
From Wikipedia, the free encyclopedia
| Divisibility-based sets of integers |
| Form of factorization: |
| Prime number |
| Composite number |
| Powerful number |
| Square-free number |
| Achilles number |
| Constrained divisor sums: |
| Perfect number |
| Almost perfect number |
| Quasiperfect number |
| Multiply perfect number |
| Hyperperfect number |
| Superperfect number |
| Unitary perfect number |
| Semiperfect number |
| Primitive semiperfect number |
| Practical number |
| Numbers with many divisors: |
| Abundant number |
| Highly abundant number |
| Superabundant number |
| Colossally abundant number |
| Highly composite number |
| Superior highly composite number |
| Other: |
| Deficient number |
| Weird number |
| Amicable number |
| Friendly number |
| Sociable number |
| Solitary number |
| Sublime number |
| Harmonic divisor number |
| Frugal number |
| Equidigital number |
| Extravagant number |
| See also: |
| Divisor function |
| Divisor |
| Prime factor |
| Factorization |
In mathematics, an almost perfect number (sometimes also called slightly defective number) is a natural number n such that the sum of all divisors of n (the divisor function σ(n)) is equal to 2n - 1. The only known odd almost perfect number is 1, and the only even almost perfect numbers known are those of the form 2k for some natural number k; however, it has not been shown that all almost perfect numbers are of this form. Almost perfect numbers are also known as least deficient numbers.

