Sublime number
From Wikipedia, the free encyclopedia
| Divisibility-based sets of integers |
| Form of factorization: |
| Prime number |
| Composite number |
| Powerful number |
| Square-free number |
| Achilles number |
| Constrained divisor sums: |
| Perfect number |
| Almost perfect number |
| Quasiperfect number |
| Multiply perfect number |
| Hyperperfect number |
| Superperfect number |
| Unitary perfect number |
| Semiperfect number |
| Primitive semiperfect number |
| Practical number |
| Numbers with many divisors: |
| Abundant number |
| Highly abundant number |
| Superabundant number |
| Colossally abundant number |
| Highly composite number |
| Superior highly composite number |
| Other: |
| Deficient number |
| Weird number |
| Amicable number |
| Friendly number |
| Sociable number |
| Solitary number |
| Sublime number |
| Harmonic divisor number |
| Frugal number |
| Equidigital number |
| Extravagant number |
| See also: |
| Divisor function |
| Divisor |
| Prime factor |
| Factorization |
In mathematics, a sublime number is a positive integer which has a perfect number of positive divisors (including itself), and whose positive divisors add up to another perfect number.[1]
The number 12, for example, is a sublime number. It has a perfect number of positive divisors (6): 1, 2, 3, 4, 6, and 12, and the sum of these is again a perfect number: 1 + 2 + 3 + 4 + 6 + 12 = 28.
There are only two known sublime numbers, 12 and (2126)(261 − 1)(231 − 1)(219 − 1)(27 − 1)(25 − 1)(23 − 1) (sequence A081357 in OEIS).[2] The second of these has 76 decimal digits:
- 6086555670238378 989670371734243169622657830773 351885970528324860512791691264.
[edit] References
- ^ MathPages article, "Sublime Numbers".
- ^ Clifford A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning New York: Oxford University Press (2003): 215

