Multiply perfect number
From Wikipedia, the free encyclopedia
| Divisibility-based sets of integers |
| Form of factorization: |
| Prime number |
| Composite number |
| Powerful number |
| Square-free number |
| Achilles number |
| Constrained divisor sums: |
| Perfect number |
| Almost perfect number |
| Quasiperfect number |
| Multiply perfect number |
| Hyperperfect number |
| Superperfect number |
| Unitary perfect number |
| Semiperfect number |
| Primitive semiperfect number |
| Practical number |
| Numbers with many divisors: |
| Abundant number |
| Highly abundant number |
| Superabundant number |
| Colossally abundant number |
| Highly composite number |
| Superior highly composite number |
| Other: |
| Deficient number |
| Weird number |
| Amicable number |
| Friendly number |
| Sociable number |
| Solitary number |
| Sublime number |
| Harmonic divisor number |
| Frugal number |
| Equidigital number |
| Extravagant number |
| See also: |
| Divisor function |
| Divisor |
| Prime factor |
| Factorization |
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.
For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of July 2004, k-perfect numbers are known for each value of k up to 11.
It can be proven that:
- For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
- If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.
[edit] Smallest k-perfect numbers
The following table gives an overview of the smallest k-perfect numbers for k <= 7 (cf. Sloane's A007539):
| k | Smallest k-perfect number | Found by |
|---|---|---|
| 1 | 1 | ancient |
| 2 | 6 | ancient |
| 3 | 120 | ancient |
| 4 | 30240 | René Descartes, circa 1638 |
| 5 | 14182439040 | René Descartes, circa 1638 |
| 6 | 154345556085770649600 | Robert Daniel Carmichael, 1907 |
| 7 | 141310897947438348259849402738 485523264343544818565120000 | TE Mason, 1911 |
For example, 120 is 3-perfect because the sum of the divisors of 120 is
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3 × 120.

