Talk:Joint European Torus
From Wikipedia, the free encyclopedia
Contents |
What is the Microsoft JET engine? (apart form being "the thing that makes MS Access crash") -- Tarquin 08:20 5 Jul 2003 (UTC)
[edit] Moved?
This was moved from JET, the normal name for the thing, to Joint European Torus - why? The normal action would be to have a note at the top of the page...
James F. (talk) 22:34, 15 Nov 2004 (UTC)
- Indeed. As a former employee on the project, I can tell you that it is always called 'JET', and the full-name never used. Dan100 19:04, Dec 14, 2004 (UTC)
-
- Still it's full name is "Joint European Torus" and its how we refer to it in our own PR material. (I'm a current PhD student on JET) --CnlPepper 00:04, 13 Jan 2005 (UTC)
-
-
- (puke) we have differnt disabiguation pages at JET and jet (disambiguation) my suggestion would be to redirect JET to here and add a pointer to jet (disambiguation). Plugwash 01:48, 8 Mar 2005 (UTC)
-
-
-
-
- Agreed. Since no one seems to object, I've taken the liberty of merging JET into Jet, and redirecting to Joint European Torus - Jak (talk) 18:12, 25 June 2006 (UTC)
-
-
[edit] Most powerful reactor?
JT-60's wikipedia entry claims that it is "the world's most powerful fusion reactor." This contradicts the claim in this article that JET "is the largest and most powerful nuclear fusion reactor yet built." Unless they're both equal in power, they can't both be the most powerful... TerraFrost 04:34, 7 Mar 2005 (UTC)
- It's so hard to define 'powerful'. Powerful in what way? Maximum heating capability? Alpha-particle self-heating? Total fusion power liberated? I think that unless one is being very specific, it's best to avoid using the term. Dan100 19:55, Mar 7, 2005 (UTC)
[edit] Theory
i've just added a lot of theory, pretty much doubling the length of the article. however i am worried about copyright. i based my writings on a HowStuffWorks article, even "stealing" a photo. i hope that, as a educational website, they will have no quarrel with me. can anyone help with the copywrite? i'm out of my depth. mastodon 17:57, 18 January 2006 (UTC)
[edit] Fusion and nuclear waste
I was about to post a comment on the talk page of cold fusion, when I saw that what I think is a fairly basic piece of misinformation is repeated on this article.
The second paragraph of the cold fusion article currently reads Hot nuclear fusion using deuterium has the potential to yield large amounts of energy, uses an abundant fuel source, and produces only small amounts of manageable waste...
On the same theme, this article (Joint European Torus) currently lists under advantages: Less nuclear waste - Fusion reactors will not produce high-level nuclear wastes, as fission does, so disposal will be less of a problem. In addition, the wastes will not be of weapons-grade nuclear materials as is the case in fission reactors.
That seems wrong on two grounds. Firstly, the development of lining materials to withstand the enormous neutron flux of a sustained D-T reaction at all is a key unsolved problem. The development of such materials that will not become high-level waste is an even bigger challenge, which the proposed materials testing reactor to be constructed in Japan as part of the ITER project will seek to address. So this is really speculation, but it reads as fact.
Secondly, the wastes produced by most fission power stations are anything but weapons-grade, and every new technology that extends the fuel life (more to minimise refuelling stoppages than to reduce fuel usage but it's still a strong trend) makes the spent fuel even less useful for weapons.
It seems pointless trying to fix the cold fusion article while we have such misleading statements in this one.
See http://www.iop.org/EJ/abstract/0029-5515/43/7/301/ for one paper that hints at some of the challenges. Comments welcome. Andrewa 16:12, 10 February 2006 (UTC)
- The majority of the high level waste produced from a fission plant is the by-products of the fission reaction - products such as cobolt-60 and strontium-90. Nasty, nasty stuff. Fusion does not have this source of waste, the by-product of D-T fusion is non-radioactive helium. The advantage of fusion in this regard is correctly stated, a fusion reactor would not produce anywhere near the volume of waste a fission reactor does. CnlPepper 10:12, 5 April 2006 (UTC)
[edit] World Record
Eeer, JT-60 achieved a larger power output, didn't they? They had 55 MW of RF and NBI heating, and a Q of 1.25... Danielfong 01:35, 1 March 2006 (UTC)
- No, JT60U does not run with Tritium. The Q of 1.25 they claim is an estimate of the fusion power that would have been achieved if the D-D fusion plasma in which the experiment was performed were replaced with a D-T plasma. The JET record is a real D-T shot, ie JET really produced power while JT60U did not (D-D fusion produces negligible power in current devices). I've added a referece to the relevant JT60U paper and clarified this the text (btw I forgot to log in before my last edit, the edit listed as 194.81.223.66 is me). CnlPepper 10:12, 5 April 2006 (UTC)
[edit] How much electricity can it make?
I was just curious as to how much electricity a fusion reactor can make.
Can you throw out a generic guess like "its gonna be 20 times more powerful than a fission reactor, produce less than 1% of the waste, and after all research is done, cost only 5 times as much to produce additional ones," or something like that?
Or does it produce the same amount of heat that a fission reactor does, for far less in fuel cost? Or three times as much heat, allowing you to turn 3 times as much water into steam, that steam rising up to turn turbines and thus produce electricity. Dream Focus 05:33, 2 February 2007 (UTC)
- The real answer is noone knows yet. If fusion works out then there should be basically no high level long lasting waste (there will still be a lot of the low level stuff because of the neutron bombardments on parts of the reactor) but its hard to come up with concrete figures when you don't even have a working (over breakeven) reactor and noone knows just how well the reactor materials will hold up under sustained neutron bombardment. Fuel costs should be relatively minor (lithium is a common metal and duterium can be obtained by using isotope sorting methods on ordinary hydrogen)
- The really big advantages though are it would be virtually impossible to weaponise (fusion bombs do not use anything made by fusion reactors) and it would not be at risk of a meltdown since the reaction isn't self sustaining. Plugwash 21:31, 2 February 2007 (UTC)

