Talk:Reflection (physics)

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
B This article has been rated as B-Class on the assessment scale.
High This article is on a subject of High importance within physics.

Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

Contents

[edit] Question: Reflection vs Refraction

One thing that this article doesn't explain is why a greater angle of incidents results in more reflection and less refraction. A more fundamental question is, "why does light reflect at all?" If the article answered that question, it might be more obvious how light could be partially reflected and partially refracted in some cases.

[edit] Phase inversion

Is this right: "Depending on the nature of the interface, i.e., dielectric-conductor or dielectric-dielectric, the phase of the reflected wave may or may not be inverted."? I thought the phase inversion of reflected light depended on the relative refractive index of the interfacing materials. Maybe both are right, but probably the article should be more clear. --Chinasaur 05:42, 4 Aug 2004 (UTC)

[edit] QM reflection

A quantum mechanical description of reflection would be nice if someone had the ability to explain it, since this article doesn't reveal the reason for which light is actually reflected from a surface.

[edit] Easily Amused

"all non-shiny objects that are not black."

It's accurate; I just thought it sounded... amusing, probably because of the use of the word "shiny." Not going to edit to "all objects that do not shine and are not black" because that's a tad verbose and there's no real point. Just throwing that out there. --165.134.132.122 22:26, 18 August 2005 (UTC)

[edit] Images

I have some photographs on my userpage of the famous curved, reflective sculpture Cloud Gate that could be illustrative. Spikebrennan 17:30, 6 July 2006 (UTC)

[edit] A little history?

I was thinking a little history could be added to this article such as the Euclid's contributions to the field (is his the earliest known studies? Who are the other people noted for their theories on reflection?) and maybe links to and expansion of the term Catoptrics. 69.72.93.142 14:11, 2 December 2006 (UTC)


[edit] Quantum interpretation

Can someone provide a source for the information provided in this section? Particularly the first paragraph. Thanks!

[edit] What about absorption?

If "part of the light is reflected and the remainder is refracted", then I guess a black surface does not absorb light. Does it turn all the light into non-visible electromagnetic radiation? (I doubt it). We all know that a black material heats up more quickly than a white material when exposed to solar lignt. Where does that thermal energy come from? Just from absorbed infrared or ultravioolet radiation? ...

The paragraph about the quantic interpretation says that photons are sometimes absorbed. Do you mean that there are some cases in which the light does not produce heat when it strikes an opaque object, or passes through a transparent medium such as the air or water? Cases in which the light is completely "cold"?

In my opinion, these are questions that one should be able to answer after reading this article, but the article is not clear enough with respect to this topic. I am not an expert in optics, I just wanted to give to the experts an advice for improving the article. Regards, Paolo.dL (talk) 22:26, 6 January 2008 (UTC)

[edit] Diffuse->specular

I am trying to understand what happens when a surface gets smoother and smoother e.g., when it is polished, but the same idea applies to sound waves, I am sure. What happens to a surface's reflections as it gets smoother? A metal surface with a small-enough pattern of saw-toothed ridges will reflect sound crisply; if you make the pattern small enough, I think you will even get nice sharp specular reflection of light. But how small do they have to be to appear smooth acoustically? Optically? I assume it will be a function of wavelength... —Ben FrantzDale (talk) 00:05, 27 May 2008 (UTC)