Talk:Optical tweezers

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
??? This article has not yet received a rating on the assessment scale. [FAQ]
??? This article has not yet received an importance rating within physics.

Help with this template Please rate this article, and then leave comments to explain the ratings and/or to identify its strengths and weaknesses.

Contents

[edit] Regarding To Do List

  • Discuss: should history section be moved to the end or remain on top?

A progress of the field on optical tweezing has very much increase the cross-fertilisation of ideas of the field in biology and optical physics.

  • Example of a landmark single-molecule experiment (e.g. kinesin, RNAP)?

Landmark in both advancement of tweezing technqies and biology related experiments should all be included. A time-line of the experiments would be an idea format.

  • Add section on experimental design, construction and operation of optical tweezer setups.

Methods of force and position detection. Calibration of the trap stiffness.

See Justin Molloy online resource [1]

  • Discuss details of different kinds of optical tweezer setups (non-basic setups) in an organized fashion.

- single beam gradient force trap - dual beam gradient force trap - counterpropagating trap - novel beam traps - Time shared traps - Holographic optical traps - Calibration of optical trapping

 - QPD
 - Position Detectors
 - Differential detection. 
 - Effects of angular aperture
 - Lateral and axial trap stiffness measurments 

- Optical trapping in Biology

 - Single molecule
 - DNA, RNA
 - Cellular mechanical

- Optical trapping in Optical physics

 - Optical angular momentum


  • Add short description of research group expertise for labs indicated at the end of the article. Possibly one-word links to relevant wiki pages?

- Great idea

leenewt

[edit] To Do List

I'd like to start working on improving the optical tweezers entry over the following days/weeks/months. In order to help with that, I've decided to create a To Do List. Others are encouraged to participate by adding/deleting/discussing entries on the list in addition to editing the article.

-RockyRaccoon 22:54, 3 September 2006 (UTC)

To-do list for Optical tweezers:
  1. Ensure that footnotes are added properly.
  2. Fix spelling/grammatical mistakes.
  3. Reorganize article layout to improve flow.
    • Discuss: should history section be moved to the end or remain on top?
    • Example of a landmark single-molecule experiment (e.g. kinesin, RNAP)?
  4. Add section on experimental design, construction and operation of optical tweezer setups.
    • Methods of force and position detection.
    • Calibration of the trap stiffness.
  5. Discuss details of different kinds of optical tweezer setups (non-basic setups) in an organized fashion.
    • Different lasers for manipulation and detection.
    • Time-sharing single lasers for multiple traps.
    • Dual trap setups.
    • Differential detection.
    • Angular optical trapping (polarization).
  6. Briefly describe how optical tweezers are used to study specific systems.
    • Stretching/Unzipping DNA
    • RNA Polymerase/DNA Polymerase
    • Chromatin/Nucleosomes
    • Helicase
    • Topoisomerase, Gyrase
  7. Add short description of research group expertise for labs indicated at the end of the article.
    • Possibly one-word links to relevant wiki pages?

[edit] Equations

I finished the equations section with some explanation of the steps throughout. Any comments of the layout? I erred on the side of including too many equations so that every step is exlpicitly shown. I figured this would allow a wider range of audiences to follow through the derivation themselves if they desire. I feel it's better that way than to include only the punchline. At first the layout looked messy, but I cleaned it up quite a lot and I'm fairly happy with it now. I think a bit more physical explanation may be needed either before or after the equations, but I'm not sure yet what to put there, if anything. Any ideas are greatly appreciated! -RockyRaccoon 07:41, 9 September 2006 (UTC)

[edit] Comments Equations

Hi RR,Really nice job on the optical tweezers site..as i did not have time to do any updates or corrections lately. Anyway, the equation is mainly on Fgradient there should also be Fscattering as well.

-leenewt

[edit] Steven Chu Quote in History Section

I was thinking about removing the quote from the Steven Chu interview. It's rather long and I feel it distracts from the main content of the article. There is already a reference to the interview and readers who are interested in this will likely follow the reference to it. But I think its a poor assumption that all readers will be interested. Any comments? -RockyRaccoon 07:37, 3 September 2006 (UTC)

  • Okay, I actually removed it. Take a look and if anybody disagrees, let's discuss. I think it's much better without it.

[edit] Addition of some Quote in History Section

It looks great as well...However, i think that a quotation by either Ashkin or steven chu should be added to give the article some personal touch instead of being too technical. -leenewt



Units...

The first sentence in the "Optical tweezers in brief" section doesn't make sense. Specifically, "...from less than one piconewton to greater than a femtonewton." A femtonewton is smaller than a piconewton. I don't know if the two words need to be switched or if the original author had the incorrect units...



The Next Step in Optical Tweezers.....where are we heading to?

Are we heading anywhere with the physics of optical tweezers? It appears that optical tweezers have a stronghold in the world of microbiologist and atom cooling, but more so as a tool. Most of the fundamental physics behind optical tweezers have been well cover by the early pioneer especially Arthur Ashkin.

One strong question that i am eager to answer is, What else has optical tweezers not been applied on? Which realms of science has optical tweezers yet to touch?....

1) Atmospheric Science where aerosol trapping is quite an immature field?

2) Ocean science where tweezers can be brought to the depth of the ocean to study the single cell micro-organism in the deep sea.

Anymore??!!




NOTE: Link on second refrence at bottom of page is broken.--134.10.9.127 19:51, 12 January 2006 (UTC)


I do not have time to edit this page to correct my few gripes, so I'll list things I believe to be issues, and leave it at that.

There are a number of typos, such as "reserach" instead of "research", "ataoms" not "atoms" etc. I suggest someone run this through a spellchecker. Additionally, general grammar issues, for example "...Ashkin proposed that optical micromanipulation can be analysis" (my emphasis)

The section "optical tweezers in brief" is relatively confusing and badly written. It either needs editing to be more clear, with the section of quotation edited so as to be more standardly presented, or completely re-written. Phrases like "overcomes the push of the beam" are not appropriate, in my opinion, as they are unscientific, and not terribly meaningful.

Disagree with the inclusion of certain "Key figures" whilst excluding others. I think it beyond passing strange that Arthur Ashkin, the father of optical trapping, is not included, whilst Dmitri Petrov, a relatively obscure figure is. It is my opinion that exhaustively listing all research who have played a major role in the field is not plausible, and that this section should be removed. Those wishing to read more on the subject are able to find Molloy and Padgett online, or any one of the multiple optical trapping reviews listed on the page.

Additionally, I would suggest that Padgett and Molloy's paper, "Lights, Action: Optical Tweezers" also be listed in the section entitled "Professional Paper".

To the above commenter, who states that the fundamental physics are well established, I would ask for information on trapping particles between the mie and rayleigh regimes. Certainly, Neuman and Block (Rev. sci. Instr. 75, 2787) suggest that the physics in the intermediate case are not well understood, though I will concede that my knowledge of Rohrback and Steltzer's work is not as complete as it might be. Later in the same review paper, the Jarzynski equality, and the consequence that the second law of thermodynamics appears to be subject to short time violations is discussed, with optical traps used as the tools that elucidated this discovery. I would suggest that there was both room for more work in the physics of optical trapping, and that fundamental physics can and will be advanced with the ability to apply pN forces at the nanoscale.

Alec Zorab

--

Further to my comments above, I now note that according to the edit history of the main page, the links provided for the Key figurees, to which I objected, are meant to be to active research groups. Whilst I concede that this somewhat nullifies my criticism of Ashkins exclusion, I still think it strange that other researchers are not being listed, and would suggest that either someone got ot the effort of finding links to all the research groups currently actively working on optical trapping, or that this section be removed. My previous comments about the ability of the reader to decide which groups interest them, based on references from review papers still stands.

Alec Zorab


[edit] Flawed Explanation

The 'Ray Optics' explanation is in my opinion conceptually flawed:
as is well known from basic school physics, the phenomenon of the refraction of light is not consistent with Newton's laws, but can only only be explained by a wave model, so it is paradoxical to combine the refraction hypothesis with Newton's laws here.

There is in fact no consistent theory which would result in the 'radiation pressure' which is postulated to be relevant here (see my website entry regarding Radiation Pressure ( http://www.physicsmyths.org.uk/#radpress ) and my pages regarding the Wave and Particle Theory of Light applied to the Photoelectric Effect ( http://www.physicsmyths.org.uk/photons.htm ) and the Energy and Momentum Conservation Laws in Physics (http://www.physicsmyths.org.uk/conservation.htm ) (from which it is obvious that the concept of a 'momentum' (as well as 'energy') can only be applied in classical mechanics but not to light)).

Thomas

Certainly a consistent theory would be nice. But even when we don't know how they work, these optical tweezers do, in fact, work.
I see that "photons have momentum" is claimed in both the photon and the solar sail article.
If you want people to think that momentum cannot be applied to photons, perhaps you could begin with those articles.
--75.48.165.135 07:36, 1 October 2007 (UTC)

[edit] Research groups using optical tweezers

I've removed this section, as optical tweezers have become such a widely used tool that this is analogous to something like "research groups using electron microscopy"... such a list can never be complete. Akriasas (talk) 18:49, 7 February 2008 (UTC)

[edit] DLBT in "History and development"

The following statement appears in the "History and development" section:

In 2004 Optical tweezers made the leap from large, complicated, expensive machines to much simpler, smaller, inexpensive and ultimately portable systems with the introduction of DLBT (Diode Laser Bar Trapping).

I am proposing to remove this statement because this technique has not made a lasting, substantial impact in the "History and development of optical trapping." If I am mistaken, can somebody provide evidence of its widespread adoption? I don't wish to diminish the impact of the paper, but I do not think every change in geometry or optics needs to be mentioned in this section. —Preceding unsigned comment added by Chodges (talkcontribs) 23:38, 23 February 2008 (UTC)

I changed it to sound less dramatic. --chodges (talk) 22:38, 5 March 2008 (UTC)