Talk:Lung volumes
From Wikipedia, the free encyclopedia
I agree with the poster below. If I new how to post that a piece of information is in dispute, I would post that on the part that states that lung volume is affected by altitude. In fact, it is ventilation, and hematocrit that are affected by high altitude. Even though the air is less dense, The body will compensate by regulating the pressure of the chest wall, pleural pressure, and lung pressure, thereby causing the lung volume to be regulated. Vihsadas 18:19, 29 April 2007 (UTC)
Hey, I'm new to talk pages but as far as I've learned throughout multiple exercise science and physiology courses, Lung Capacity is almost entirely genetic. (Height, age, gender all play roles along with just an individual genetic basis.) I have never read ANYWHERE that living at higher altitudes increases lung capacity nor being an athlete. I know as a fact that living at higher altitudes increases the volume of BLOOD in your body (and hemoglobin concentration), allowing people to make better use of the oxygen available, but never have I heard altitude affects lung capacity at all. Also, athletes tend to be able to breathe less and have a lower heart rate because of increased stroke volume of the heart, and increased max VO2 (muscle efficiency at using oxygen in the bloodstream). I checked through the sources listed (except for the book) and none of them say ANYTHING about altitudes or being athletic affecting MAXIMUM LUNG CAPACITY. In fact, one source says "age, gender, height" and nothing else. As for the highest lung capacity ever recorded being an athlete (as an argument against), cause and effect. Does he have a huge lung capacity because he's an athlete, or is he a great athlete because he has a huge lung capacity?
As far as I know, the alveolar and arteral oxygen partial pressure are the same which are both 100mmHg. Human lung is able to let incoming blood reach oxygen partial pressure equalibrium with alveolus within the first one third of the path with contact with alveolar air. Source: Essential erspiratory physiology, J. West.
Contents |
[edit] Citation needed
who has the largest lung capacity on record? Does any one know the answer to this particular question?
- The largest total lung capacity recorded was that of British rower Peter Reed, with a volume of 11.68 l. is listed in the article, no citation is given. Demantos 18:29, 8 May 2007 (UTC)
- Actually, most search results, like this say 9.38 l for him. And his record category appears to be "biggest lungs on a British athlete", rather than "world's biggest lungs". Quite impressive nontheless, as even with athletes, slightly above 8 seems to be the upper limit; and most spirometers measure only up to 7. I once met a free diver at a party, who said his lung capacity was 8.2 l, and that the record for a Finnish diver was 8.8 l. I wonder how people with gigantism fare on this one... --Anshelm '77 01:01, 3 September 2007 (UTC)
What happens to lung capacity under pressure? Under water, for divers, for instance, does ERV+RV and TV decrease? (assume shallow 10 m dive, with air mixture)
- I don't think so. The higher pressure outside is more-or-less matched by pressure inside. If the pressure inside remained at one atmosphere, the diver would find it very difficult to breathe. --Ihope127 23:57, 10 November 2006 (UTC)
[edit] First sentence
"The average pair of women's lung can hold only about 4.5 litres of air; when comparing to men's lung which can hold up to about 5 litres of air" - This is not a suitable way to open the article. Besides, the difference in lung capacity between males and females is already mentioned in the second paragraph; it is completely unsuitable as a first sentence. Owen× ☎ 04:22, 4 December 2005 (UTC)
[edit] Factors affecting lung volume: Altitude
I believe there is a misleading comment in this section of the article. As it stands, the article states that "there is less oxygen in the air at altitude". However, this comment is misleading, as there is still, to my knowledge, the same proportion of oxygen versus other gases in the atmosphere at all altitudes (at least within the troposphere); the air just becomes less dense as you go up. So, while the comment is technically correct, it is still misleading, as it suggests it is only oxygen that decreases in amount, when in reality the lower density would lower the amount of all gases entering the lungs.
I hope this issue can be cleared up easily. I'd do it myself, but I'm too busy to find a source for my statements. (I know them from my high school curriculum.) Keith Davies Lehwald 00:49, 7 June 2006 (UTC)
[edit] FRC
In the article is seems as though there are two definitions of FRC. Near the top it says it is ERV + RV and near the end of the article it says it is IRV + RV. Which is the correct one? 64.81.186.50 23:29, 7 December 2006 (UTC)Erik Henne 7 December 2006
[edit] Liter abbreviation
Whoops, seems that you indeed use L in some places of the world. Feel free to revert my changes if you wish :) --SLi 22:59, 28 December 2006 (UTC)
[edit] Change Rate
Another value that can be calculated is the "Respiratory quotient". RQ = rate of CO2 production/rate of O2 consumption. RQ can vary with diet and exercise, but under typical conditions, RQ = 0.8.
Only approximately 7.5% of lung air is changed over on one breath at rest.
Could someone cite and further explain the relationship between those two points. if 20% of the air is taken away then how is the change only 7.5%? 216.84.45.194 15:38, 2 January 2007 (UTC)
Volumes don't match: according to the table in 'Measurement and values' TLC = 6 liters and TLC = IRV + TV + ERV + RV As well according to the table: IRV = 3.6
TV = 0.5
ERV = 1.2
RV = 1.2
thus TLC = 6.5 liters
[edit] Litres
i noticed most of the measurements are either in Litres or Millilitres i was wondering wat temperature and pressure these were recorded at, as if these variables change the true consumption of atmoshphere changes. —The preceding unsigned comment was added by 203.164.194.243 (talk) 11:47, 13 March 2007 (UTC).
[edit] "Yahoo answers" item about smoking
In http://answers.yahoo.com/question/index?qid=20070419113731AAz33un a pseudonymous poster "Matt A" (who claims to have a degree in respiratory science and be a registered respiratory therapist) claims that chronic obstructive pulmonary disease (COPD) caused by smoking results in *increases* in total lung capacity (TLC) and residual volume (RV), but decreases in functional capacity. That smoking increases TLC is confirmed by, for example, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8966368&dopt=Abstract , the abstract to which mentions in passing that they are using large TLC as an operational definition of emphysema caused by smoking. (That paper is entitled "Alcohol consumption modifies the total lung capacity in smokers", and it's by Strom et al., in Respiration, 1996;63(2):66-72.)
I don't feel that I'm qualified to edit the facts of this Wikipedia article, but in light of this somewhat paradoxical effect, perhaps the "heavy smokers" item being in the "decreases lung capacity" column is somewhat misleading?
Kragen Sitaker 22:42, 27 April 2007 (UTC)
[edit] Use of the terms Volume and Capacity in lung measurement
Each of these terms has a specific meaning. There are four volumes that are distinct and that do not overlap. These four volumes can be combined to form the capacities. While it is quite easy to fall into the trap of sloppy language, it will lead to endless confusion. Docdave (talk) 02:58, 17 January 2008 (UTC)

