Talk:Black dwarf
From Wikipedia, the free encyclopedia
Contents |
[edit] Black body radiation
This entry used to say: "only emits black-body radiation". But black body radiation can be bright white; the "black-body" refers to the fact that the body doesn't reflect light--all the light it emits it generates itself. A white dwarf is as much (or as little) of a black body as a black dwarf. -- —Preceding unsigned comment added by 24.6.67.123 (talk • contribs)
[edit] Black dwarfs in other universes
Removed "It is possible, though, that some black dwarfs currently exist in other universes that are old enough to have them, if they exist." Pretty much anything is possible when you invoke other universes, so this doesn't add anything to the reader's understanding of black dwarfs. -- JustSayin 18:13, 7 April 2006 (UTC)
"Other Universe"?O.o —The preceding unsigned comment was added by 68.237.238.121 (talk • contribs) on 02:29, 1 May 2006.
- Depending on what assumptions you make about how cosmic inflation works, or how m theory works, you can get laws of physics that allow "other universes" to exist (universe-like spaces that are not in causal contact with our own). Under some situations, these may have existed for far longer than our own universe, raising the possibility of burned-out stars cooling to become black dwarfs (which hasn't yet occurred in our universe). As was pointed out above, you can postulate just about any scenario you like existing in other universes, so it isn't usually a terribly useful exercise. --Christopher Thomas 22:52, 2 May 2006 (UTC)
[edit] Colonizing a black dwarf
Something I've been vaguely curious about for a while: whenever the time comes that we do get black dwarfs, would it be "possible" to land future astronauts on them? What would the ground be like? Could we actually colonize these... dead stars as planets? —The preceding unsigned comment was added by 72.60.109.138 (talk • contribs) on 00:30, 11 June 2006.
- A black dwarf would be a ball of mostly carbon, nitrogen, and oxygen. If I understand correctly, most of the nuclei would be in a spherical close-pack crystalline lattice (most space-efficient possible), with the degenerate electron gas permeating through the lattice. This would form a metallic core of the star. Close to the surface, you still get a close-packed lattice, but some of the electrons are bound to individual nuclei. Very close to the surface, you get something resembling normal matter (carbon, nitrogen, and oxygen compressed enough to become metallic and share valence electrons, but not compressed enough to lose core electrons). Above this would be a thin layer of carbon nitride, diamond, and other compounds with more normal crystal structures. The atmosphere would be hydrogen and helium with trace amounts of water, methane, and ammonia.
- Colonizing a world like this would be difficult, mostly due to the extremely strong surface gravity. A Newtonian approximation gives something like 200,000 times Earth's gravity, but the actual result will be very different. The gravity well is deep enough to require General Relativity for a full description; Newtonian gravity gives an escape velocity greater than the speed of light. Humans would be instantly crushed, and any kind of structure would have to be very small (less than a millimetre high gives the kinds of stresses found in the tallest existing buildings). A more viable approach with today's technology would be to find a white dwarf that hadn't quite cooled to the black dwarf stage, and build a dyson swarm of habitats around it.
- It would make a nifty science fiction story, though. See Dragon's Egg for a similar story about a neutron star. --Christopher Thomas 19:42, 11 June 2006 (UTC)
-
- Thanks a lot, Mr. Thomas. You've answered a question I've wondered about since I was a young lad, nose deep in outdated astronomy books. :) Nerva 16:34, 16 June 2006 (UTC)
-
- Just caught a mistake I'd made: The black dwarf would be almost completely carbon. The CNO cycle transmutes existing carbon into nitrogen and oxygen (and then carbon again), but that would only cycle carbon that was present when the star formed, during hydrogen burning. Most of the white dwarf's carbon would be formed later via the triple-alpha process during helium burning. --Christopher Thomas 16:25, 27 June 2006 (UTC)
[edit] drunk scientest = black dwarf
ok who ever came up with the blacck dwarf idea must have been drunk or something because seriouly who comes up with such a dumb idea i mean seriously think about it "it takes longer than our universe to form" ok right sir drunkscientest what gives this any proof and if there are such things and they exist now (we dont know that yet so dont give me the takes longer than our universe thing)how the heck would we find them they give off no radiation because from what i know white dwarfs just go to a little ash in the universe or what so if you can give me any thing that gives this theory any solidity that makes it actually seem possile please inform me but from reading this i think the dude who came up with this was Drunk --209.159.197.82 (talk) 23:37, 13 January 2008 (UTC)
- We know white dwarf stars exist. White dwarfs do not "turn into ash", they just cool, becoming dimmer and dimmer. At some point, they become so cool and dim that they are categorized as black dwarfs. This would take an exceedingly long period of time, and the universe is not old enough for this to have happened yet. It would be difficult, but not impossible to detect them, however, as none are expected to exist now, I doubt there is a lot of effort spent in looking for them. --RLent (talk) 18:40, 18 January 2008 (UTC)
[edit] drunk scientest= black dwarf
ok so from reading this article i think the guy who came up with the black dwarf theory was seriously drunk what give us any evidence that this is possible —Preceding unsigned comment added by 209.159.197.82 (talk) 23:38, 13 January 2008 (UTC)
[edit] When does a white dwarf turn into a black dwarf?
I'd really like to know. The article isn't clear on this. Is a white dwarf a black dwarf when it has become so cool that only radiates infrared light? Or is it truly black when not even infrared telescopes [theoretically] can detect it? --Harald Khan Ճ 17:20, 7 May 2008 (UTC)
- There probably isn't a strict definition, because I don't think there is some sharp change in the nature of the star as it cools to low temperatures. The name "black dwarf" seems to just be an acknowledgment that eventually white dwarfs, which are quite hot and bright (for their size), will become cool and dim. I talk to a lot of astronomers and have never heard one use this term. They would probably just say something like "cold white dwarf". 146.139.199.27 (talk) 20:58, 5 June 2008 (UTC)

