Talk:Atomic theory

From Wikipedia, the free encyclopedia

Good article Atomic theory has been listed as one of the Natural sciences good articles under the good article criteria. If you can improve it further, please do. If it no longer meets these criteria, you can delist it, or ask for a reassessment.
This article is part of the History of Science WikiProject, an attempt to improve and organize the history of science content on Wikipedia. If you would like to participate, you can edit the article attached to this page, or visit the project page, where you can join the project and/or contribute to the discussion. You can also help with the History of Science Collaboration of the Month.
Good article GA This article has been rated as GA-Class on the quality scale.
Top This article has been rated as Top-importance on the importance scale.
WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
A This article has been rated as A-Class on the assessment scale.
Top This article is on a subject of Top importance within physics.

Help with this template

Contents

[edit] John Dalton

I've done a lot of googling on the net trying to find precise details on how exactly Dalton arrived at his atomic theory, and some of the information has been contradictory. When I wrote this section, I put nitric oxide and oxygen as one of the pairs of gases he studied. Some articles said Dalton referred to the former as "nitrous gas", and that this gas was really nitric oxide (NO). The equations and ratios I wrote were an educated guess on my part rather than a quotation from what Dalton actually did. However, another wikipedian rewrote it to be nitrous oxide (N2O), which changes the equations somewhat. Are there any experts on Dalton's life and work who can give a definite answer to this? Could some student here please ask their chemistry professor?


I removed this paragraph:

In some cases the study of a property at atomic level is very complex and easier results are obtained with a study at a bigger scale. This does not means that atomic theory does not work in these cases. The problem is the mathematical complexities given by treating such problems with the atomic theory. Till nowdays there are no cases where atomic theory does not work, there are only cases in which the result is more easily obtained, in the limit of the wanted approximation, with easier theories. Despite that it may be of some worthness to point out that a general vision should always kept and considered, and to consider the world or the entire universe only as series of atoms is reductive.

Aside from its very strange usage ("Till nowdays", "some worthness"), I think this is factually incorrect. There are many cases where atomic theory does not work, which is why a further reduction to quantum mechanics was required. I would be happy with a rewriting of this paragraph to express the fact that large-scale abstractions are still useful for thinking about things, as long as it is correct. Brighterorange 7 July 2005 23:25 (UTC)

You did the right thing. It was too generally worded to get any interesting meaning out of it, its vague. Re-write if you wish. linas 04:35, 10 July 2005 (UTC)

I removed a small paragraph mentioning an early, discarded theory of cubical atoms from the last section. I believe this article should focus only on the chain of developments that led to modern accepted atomic theory (in particular, give the reader a basic idea of how scientists figured it out). Dead ends and tangents can make things a little confusing.Kurzon


You really do have a great article, but I have one point...it was Dalton's "Atomic Theorie" he really did spell it like that...74.237.244.61 22:26, 18 February 2007 (UTC)

I've made some corrections and additions requested by the first writer in this section. The writer's "educated guess" was very close to the truth, but not quite, as the multiple for Dalton was nitrous air, not oxygen. Dalton's "nitrous air" is nitric oxide, not nitrous oxide (the latter of which he called by that name). Dalton spelled the word "theory" just as we do. Ajrocke (talk) 14:33, 13 February 2008 (UTC)

[edit] Visualizability

"Up until the late 20th century, atoms could not be directly observed. Beginning as a purely philosophical concept, their existence and nature were explored indirectly by correlating knowledge gained through various scientific experiments over the course of the past few centuries." I'm not sure what is meant here by "directly observed" — they can still not be "directly" observed any more than they once could. They can be indirectly observed, and with far better precision than they could before, but "directly"? Though I am usually averse to Bohr-style philosophical discussions of what "observation" means, when we are talking about things as small as atoms I think it becomes impossible not to be very careful in our terminology. --Fastfission 19:51, 15 October 2006 (UTC)

Don't field ion microscopes count as direct observation? Kurzon 14:36, 17 October 2006 (UTC)

[edit] Philosophical Atomism vs. Atomic Theory.

This is already a great article.

I have a problem: Philosophical atomism addresses the concept that the matter in the universe is composed of indivisible units. This philosophy is not invalidated by "splitting the atom". Basically, the fact that we can split an "atom" merely means that we assigned the name "atom" to the wrong physical unit.

The definition of an "atom" according to the philosophers is "an indivisible entity." It is not the fault of the philosophers that Dalton and other early chemists incorrectly attached the word "atom" to an entity that we later discovered to be divisible.

[edit] GA Passed

Congratulations, this article has passed the GA nominations. As a suggestion I would suggest having 2-3 citations in each section. Tarret 19:25, 28 October 2006 (UTC)

[edit] GA sweeps review

Re-reviewing the article on 29 August 2007 to confirm that it still meets the GA criteria. Other than a few minor reference formatting fixes, this article continues to meet the criteria, and will continue to be listed as a Good Article. Dr. Cash 16:47, 29 August 2007 (UTC)

[edit] More on quantum model needed

Most of this article is about the redundant atomic theories, more needs to be added about the current accepted model

That's what the atom article is for. This article is about the chain of discoveries that led to the current model, and the historical models begot at each stage.

[edit] Isotopes

The discovery of isotopes is commonly attributed to Frederick Soddy (at least he is the one who got the Nobel Prize for it). I don't know much about the claim that it was Thompson, but if there's something to it the article should also mention Soddy and explain. If not, the attribution should be replaced by the correct one. -Itub 18:37, 26 March 2007 (UTC)Small TextSmall TextSmallText[[Media:#REDIRECT Example.ogg
Strike-through text]]

Well, Thomson generated the DATA for neon, but he didn't interpret it correctly at first. It sat there until 1920, when somebody realized what it was. There's also a difference between the guy who first understood that there could be isotopes of LIGHT and STABLE elements (like neon) vs the heavy and radioactive stuff that everybody was working with. I'll read INWARD BOUND on the subject and see if I can sort it out a bit better.SBHarris 18:52, 26 March 2007 (UTC)

Soddy's Nobel Lecture and Aston's Nobel Lecture are illuminating. There were many "discoverers" of isotopes in the experimental sense, but Soddy was the one who got the credit for coming up with the concept and clarifying the confusion caused by the various decay products of uranium and thorium. Apparently Thomson was indeed the discoverer of isotopes of light elements, but the isotope concept was mostly formed already based on the radioactive elements. Thomson's former pupil, Aston, got the Nobel Prize for improving the technique and applied it to the discovery of isotopes of many other elements. Note, however, that the importance of Thomson's discovery had already been recognized by Soddy in 1913. He said "The discovery is a most dramatic extenions of what had been found for elements at one extreme of the Periodic Table to the case of an element at the other extreme, and strengthens the view that the complexity of matter in general is greater than the periodic law alone reveals". --Itub 11:30, 27 March 2007 (UTC)

[edit] Grammar Question

Is this a sentence? Or, in a nutshell, the idea that all things are made of atoms. —Preceding unsigned comment added by Anthon01 (talkcontribs) 20:44, 23 January 2008 (UTC)

I'm going to fix it. Anthon01 (talk) 21:48, 26 January 2008 (UTC)

[edit] Looks like error

I'm just learning English, but from the sentence "Further experimentation by Rutherford found that the nuclear mass of most atoms exceeded that of the protons it possessed" I made a conclusion that the mass of an atom is greater than the sum of mass of separated protons. The matter is that the mass of an atom is less than sum of separate nucleus, because some part of the mass was converted to binding energy. —Preceding unsigned comment added by 82.207.2.194 (talk • contribs) 07:15, 24 February 2008

The sentence refers to the understanding of the nucleus prior to the discovery of the neutron (which makes up more than half the mass of alomost all nuclei) and is unrelated to the more recent concept of binding energy. Vsmith (talk) 15:33, 24 February 2008 (UTC)