User:Yorik sar

From Wikipedia, the free encyclopedia

Contents

[edit] new one

[edit] \int \ln \left(x^2-1\right)\, dx

=x\ln\left(x^2-1\right) - \int \frac {x*2x}{x^2-1}\,dx = x\ln\left(x^2-1\right) - 2*\int \left( 1+\frac 1 {x^2-1} \right) \,dx = x\ln\left(x^2-1\right)-2x + 2\int\frac {dx} {x^2-1} =

= x\left(\ln\left(x^2-1\right)-2\right)+\int\frac{dx}{x-1}-\int\frac{dx}{x+1} =x\left(\ln\left(x^2-1\right)-2\right) + \ln\left|x-1\right| - \ln\left|x+1\right| = x\left(\ln\left(x^2-1\right)-2\right) + \ln\left|\frac{x-1}{x+1}\right|

[edit] №3738


I_1 = 
\int\limits_0^1 \cos\left(\ln\frac 1 x\right)\frac {x^b-x^a} {\ln x}\,dx = 
\int\limits_0^1dx \int\limits_a^bdy \cos\left(\ln\frac 1 x\right)x^y = 
\int\limits_a^bdy \int\limits_0^1dx \cos\left(\ln\frac 1 x\right)x^y


I = \int\limits_0^1 \cos\left(\ln\frac 1 x\right) x^y\,dx = 
\frac 1 {y+1}\int\limits_0^1 \cos\left(\ln\frac 1 x\right) d\left(x^{y+1}\right) =
\frac 1 {y+1}\left( \left.\left( x^y\cos\ln\frac 1 x \right) \right|_0^1 - 
  \int\limits_0^1 x^{y+1}\sin\ln\frac 1 x\,dx \right) = 
= \frac 1 {y+1}\left( 1 - \frac 1 {y+1}\int\limits_0^1\sin\ln\frac 1 x d\left(x^{y+1}\right)\right) = 
\frac 1 {y+1} \left(1 - \frac 1 {y+1}\left(\left(\left.x^{y+1}\sin\ln\frac 1 x\right)\right|_0^1
 + \int\limits_0^1\cos\left(\ln\frac 1 x\right) x^y\,dx\right)\right) = \frac 1 {y+1} - \frac 1 {(y+1)^2} I I = \frac {y+1} {1+(y+1)^2}


I_1 = \int\limits_a^b dy\frac{y+1}{1+(y+1)^2} =  \left.\frac {\ln (1+(y+1)^2)} {2}\right|_0^1  = \frac 1 2 \ln \frac {1+(b+1)^2}{1+(a+1)^2}

[edit] next