Xenon tetroxide

From Wikipedia, the free encyclopedia

Xenon tetroxide
Xenon tetroxide
Space-filling model of the xenon tetroxide molecule
IUPAC name xenon tetraoxide
xenon(VIII) oxide
Structure
Molecular shape Tetrahedral[1]
Dipole moment 0 D
Properties
Molecular formula XeO4
Molar mass 195.29 g mol−1
Appearance Yellow solid below −36°C
Density  ? g cm−3, solid
Melting point

−35.9 °C

Boiling point

0 °C decomp.[citation needed]

Solubility in water Soluble
Thermochemistry
Std enthalpy of
formation
ΔfHo298
 ? kJ mol−1
Standard molar
entropy
So298
 ? J.K−1.mol−1
Hazards
EU classification Explosive (E)
Related compounds
Related compounds Perxenic acid
Xenon trioxide
Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)

Infobox disclaimer and references

Xenon tetroxide (molecular formula XeO4) is a yellow crystalline solid that is stable below −35.9 °C.[2][3] The xenon atom has an oxidation state of +8 and oxygen of −2. All eight valence shell electrons of xenon are involved, making it an unstable compound. Above -35.9°C it explodes to give xenon and oxygen gas. Oxygen is the only element that can bring xenon up to its highest oxidation state; even fluorine can only give XeF6, probably for steric reasons. Xenon tetroxide dissolves in water[citation needed] to give perxenic acid, and in alkalis[citation needed] to give the perxenate ion.

Another known oxide is xenon trioxide. The dioxide remains elusive and only the XeOO+ cation has been identified by infrared spectroscopy in solid argon[4].

[edit] Reactions

A spontaneous explosion occurs at temperature above −35.9 °C , with ΔH = -643 kJ/mol.

XeO4 → Xe + 2 O2

The two other short lived xenon compounds with an oxidation state of +8 are accessible by the reaction of xenon tetroxide with xenon hexafluoride. XeO3F2 and XeO2F4 can be detected with mass spectroscopy.

[edit] Synthesis

All syntheses start from the perxenates, which are accessible from the xenates through two methods. One is disproportionation of xenates to perxenates and xenon:

2 XeO42− → XeO64− + Xe + O2.

The other is oxidation of the xenates with ozone:

2 XeO42− + 4 e- + 2 O3 → 2 XeO64- + 2 O2.

Barium perxenate is reacted with sulfuric acid and the unstable perxenic acid is dehydrated to give xenon tetroxide:

Ba2XeO6 + 2 H2SO4 → 2 BaSO4 + (H4XeO6 → 2 H2O + XeO4).

The unstable perxenic acid slowly undergoes a disproportionation reaction to the xenic acid and oxygen:

H4XeO6 → 1/2 O2 + H2XeO4 + H2O.

[edit] References

  1. ^ G. Gundersen, K. Hedberg, J. L.Huston (1970). "Molecular Structure of Xenon Tetroxide, XeO4". J. Chem. Phys. 52: 812-815. doi:10.1063/1.1673060. 
  2. ^ H.Selig , J. G. Malm , H. H. Claassen , C. L. Chernick , J. L. Huston (1964). "Xenon tetroxide -Preparation + Some Properties". Science 143: 1322. doi:10.1126/science.143.3612.1322. 
  3. ^ J. L. Huston, M. H. Studier, E.N. Sloth (1964). "Xenon tetroxide - Mass Spectrum". Science 143: 1162. doi:10.1126/science.143.3611.1161-a. 
  4. ^ M. Zhou, Y. Zhao, Y. Gong, J. Li (2006). "Formation and Characterization of the XeOO+ Cation in Solid Argon". J. Am. Chem. Soc. 128: 2504-2505. doi:10.1021/ja055650n. 
  1. Lide, D. R. (ed.) (2002). CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton, FL: CRC Press.