User:Wolfmankurd/proofs

From Wikipedia, the free encyclopedia

[edit] Differential of exponential

y=ex

\frac{dy}{dx}=\frac{e^{(x+h)}-e^x}{h}

\frac{dy}{dx}=\frac{e^x(e^h-1)}{h}

Limit h → 0, (eh --1)→ h

\frac{dy}{dx}=\frac{e^xh}{h}

\frac{dy}{dx}=e^x

[edit] Differential of sin x

y=sin(x)

\frac{dy}{dx}=\frac{sin(x+h)-sin(x)}{h}

\frac{dy}{dx}=\frac{sin(x)cos(h)-sin(h)cos(x)-sin(x)}{h}

Limit h → 0, sin(h)→ h, cos(h) → 1

\frac{dy}{dx}=\frac{sin(x)1-hcos(x)-sin(x)}{h}

\frac{dy}{dx}=\frac{hcos(x)}{h}

\frac{dy}{dx}=cos(x)