Wilson-Cowan model
From Wikipedia, the free encyclopedia
| This article does not cite any references or sources. (March 2008) Please help improve this article by adding citations to reliable sources. Unverifiable material may be challenged and removed. |
| This article may be too technical for a general audience. Please help improve this article by providing more context and better explanations of technical details to make it more accessible, without removing technical details. |
In computational neuroscience, the Wilson-Cowan model describes the dynamics of interactions between populations of excitatory and inhibitory neuronal populations.
[edit] Mathematical description
Cells in refactory period 
Sensitive cells 
Subpopulation response function based on the distribution of neuronal thresholds 
Subpopulation response function based on the distribution of afferent synapses per cell 
Average excitation level ![\int_{-\infty}^{t}\alpha(t-t')[c 1E(t)-c 2I(t')+P(t')]dt'](../../../../math/f/4/5/f457feffd71466d29d8821523a766c45.png)
Excitatory subpopulation expression ![[1-\int {t-r}^{t}E(t')dt']S(x)dt](../../../../math/b/a/6/ba6f5385dc2d8d135bd0f2516dbdf3ac.png)
Complete Wilson-Cowan model ![E(t+\tau)=[1-\int {t-r}^{t}E(t')dt']S\left \{\int_{-\infty}^{t}\alpha(t-t')[c 1E(t)-c 2I(t')+P(t')]dt'\right \}](../../../../math/f/6/f/f6f0737808dff8e6c7dcb3b6b905d61c.png)
![I(t+\tau)=[1-\int {t-r}^{t}I(t')dt']S\left \{\int_{-\infty}^{t}\alpha(t-t')[c 3E(t)-c 4I(t')+Q(t')]dt'\right \}](../../../../math/d/8/f/d8f09f3be0f41a95df2ea875a59c9315.png)
Time Course Graining ![\tau\frac{d\bar{E}}{dt}=-\bar{E}+(1-r\bar{E})S_e[kc 1\bar{E}(t)+kP(t)]](../../../../math/2/2/c/22c35ebc5ddd14175884ce115c900214.png)
Isocline Equation 
![S(x)=\frac{1}{1+exp[-a(x-\theta)]}-\frac{1}{1+\exp(a\theta)}](../../../../math/b/5/5/b5586071b951217b37e32611217b922c.png)

