Image:Verhulst-Mandelbrot-Bifurcation.jpg

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description
English: Diagram showing the connexion between Verhulst dynamic and Mandelbrot set
Source

self-made

Date

2008-04-07

Author

Georg-Johann Lay

Permission
(Reusing this image)
Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-


[edit] Note

The Verhulst process


 v_k : x\mapsto kx(1-x)

is equivalent to the process


 f_c: z\mapsto z^2+c

by means of a linear transformation Φ, i.e.


\Phi^{-1} \circ v_k \circ \Phi = f_c

Just let


\Phi: x \mapsto \tfrac{1}{2}-\tfrac{1}{k}x

and observe that the Parameters c and k are connected via


1-4c \,=\, (k-1)^2

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current12:11, 14 April 20081,000×1,247 (157 KB)Georg-Johann (better quality)
16:35, 7 April 20081,400×1,920 (271 KB)Georg-Johann ({{Information |Description= |Source=self-made |Date=2008-04-07 |Author= Georg-Johann Lay |Permission={{PD-self}} |other_versions=- }} )
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):