User:V8rik/draft

From Wikipedia, the free encyclopedia

Known chemistry prior to the advent of olefin metathesis was introduced by Karl Ziegler in the 1950's who as part of ongoing work in what would later become known as Ziegler-Natta catalysis studied ethylene polymerization which on addition of certain metals resulted in 1-butene instead of a saturated long-chain hydrocarbon (see nickel effect) [1].

In 1960 a Du Pont research group polymerized norbornene to polynorbornene using lithium aluminum tetraheptyl and titanium tetrachloride [2] (a patent by this company on this topic dates back to 1955 [3]),

metathesis Duport 1960

a reaction then classified as a so-called coordination polymerization. According to the then proposed reaction mechanism a RTiX titanium intermediate first coordinates to the double bond in a pi complex. The second step then is a concerted SNi reaction breaking a CC bond and forming a new alkylidene-titanium bond, the process then repeats itself with a second monomer:


Metathesis DuPont Mechanism

Only much later the polynorbornene was going to be produced through ring opening metathesis polymerisation. Giulio Natta in 1964 also observed the formation of an unsaturated polymer when polymerizing cyclopentene with tungsten and molybdenum halides [4].

In a third development leading up to olefin metathesis researchers at Phillips Petroleum Company in 1964 [5] described olefin disproportionation with catalysts molybdenum hexacarbonyl, tungsten hexacarbonyl, and molybdenum oxide supported on alumina for example converting propylene to an equal mixture of ethylene and 2-butene for which they proposed a reaction mechanism involving a cyclobutane (they called it a quasicyclobutane) - metal complex:

Metathesis Cyclobutane Mechanism

This particular mechanism is symmetry forbidden based on the Woodward-Hoffmann rules first formulated two years earlier. Cyclobutanes have also never been identified in metathesis reactions another reason why it was quickly abandoned.

Then in 1967 researchers at the Goodyear Tire and Rubber Company described a novel catalyst system for the metathesis of 2-pentene based on tungsten hexachloride, ethanol the organoaluminum compound EtAlMe2 and and also proposed a name for this reaction type: olefin metathesis [6].

Metathesis Calderon 1967

In this reaction 2-pentene forms a rapid (a matter of seconds) chemical equilibrium with 2-butene and 3-hexene. No double bond migrations are observed, the reaction can be started with the butene and hexene as wel and the reaction can be stopped by addition of methanol.

The Goodyear group elegantly demonstrated that the reaction of regular 2-butene with its all-deuterated isotopologue yielded C4H4D4 with deuterium evenly distributed [7]. In this way they were able to differentiate between a transalkylidenation mechanism and a transalkylation mechanism (ruled out):

Metathesis Calderon 1976 Mechanism


In 1971 Chauvin proposed a 4-membered metallocycle intermediate to explain the statistical distribution of products found in certain metathesis reactions [8]. This mechanism is today considered the actual mechanism taking place in olefin metathesis.

Metathesis Metallacycle mechanism


The active catalyst, a metallocarbene .[9], was discovered by in 1964 by E. O. Fischer. Chauvins experimental evidence was based on the reaction of cyclopentene and 2-pentene with the homogeneous catalyst tungsten(VI) oxytetrachloride and tetrabutyltin:

Metathesis Chauvin 1971

The three principal products C9, C10 and C11 are found in a 1:2:1 regardless of conversion. the same ratio is found with the higher oligomers. Chauvin also explained how the carbene forms in the first place: by alpha-hydride elimination from a carbon metal single bond. For example propylene (C3) forms in a reaction of 2-butene (C4) with tungsten hexachloride and tetramethyltin (C1).

In the same year Pettit who synthesised cyclobutadiene a few years earlier independently came up with with a competing mechanism [10]. It consisted of a tetramethylene intermediate with sp3 hybridized carbon atoms linked to a central metal atom with multiple three-center two-electron bonds.

Metathesis Pettit mechanism

Experimental support offered by Pettit for this mechanism was based on an observed reaction inhibition by carbon monoxide in certain metathesis reactions of 4-nonene with a tungsten metal carbonyl [11]

Robert H. Grubbs got involved in metathesis in 1972 and also proposed a metallacycle intermediate but one with 4 carbon atoms in the ring [12]. The group he worked in reacted 1,4-dilithiobutane with tungsten hexachloride in an attempt to directly produce a cyclomethylenemetallacycle producing an intermediate which yielded products identical with those produced by the intermediate in the olefin metathesis reaction. This mechanism is pairwise:

Metathesis Grubbs 1972 tetramethylene metallocycle

In 1973 Grubbs found further evidence for this mechanism by isolating one such metallacycle not with tungsten but with platinum by reaction of the dilithiobutane with cis-bis(triphenylphosphine)dichloroplatinum(II) [13]

In 1975 Katz also arrived at a metallacyclobutane intermediate consistent with the one proposed by Chauvin [14] He reacted a mixture of cyclooctene, 2-butene and 4-octene with a molybdenum catalyst and observed that the unsymmetrical C14 hydrocarbon reaction product is present right from the start at low conversion.

Metathesis Katz 1975


In any of the pairwise mechanisms with olefin pairing as rate-determining step this compound, a secondary reaction product of C12 with C6, would form wel after formation of the two primary reaction products C12 and C16.


In 1974 Casey was the first to implement carbenes into the metathesis reaction mechanism [15]:

MetathesisCasey1974

Grubbs in 1976 provided evidence against his own updated pairwise mechanism:

Metathesis pairwise mechanism

with a 5-membered cycle in another round of isotope labeling studies in favor of the 4-membered cycle Chauvin mechanism [16] [17]

Metathesis Grubbs 1976

In this reaction the ethylene product distribution (d4,d2,d0) at low conversion was found to be consistent with the carbene mechanism. On the other hand Grubbs did not rule out that the tetramethythene intermediate was a precursor to the carbene.

The first practical metathesis system was introduced in 1978 by Tebbe based on the (what later became known as the) Tebbe reagent [18]. In a model reaction isoptopically labeled carbon atoms in isobutene and methylenecyclohexane switched places:

Metathesis Tebbe reagent

The Grubbs group then isolated the first metallacyclobutane in 1980 also with this reagent together with 3-methyl-1-butene [19]

Metathesis Grubbs 1980

and isolated a similar compound in a total synthesis in 1986 [20]

Metathesis Grubbs 1986

In that same year the Grubbs group was able to prove that metathesis polymerization of norbornene based on tebbe's reagent is a living polymerization system [21] and a year later Grubbs and Schock copublished an article describing living polymerization with a tungsten carbene complex [22] While Schock focussed his research on tungsten and molybdenum catalysts for olefin metathesis, Grubbs started the development of catalysts based on ruthenium which he hoped would be less oxygen-sensitive and therefore more functional group tolerant.

[edit] Grubbs catalysts

Drawing on earlier work by Michelotti and Keaveney on norbornene polymerization with hydrated trichlorides of ruthenium, osmium, and iridium in alcoholic solvents [23] the Grubbs group succesfully polymerized the 7-oxo norbornene derivative using ruthenium trichloride, osmium trichloride or tungsten alkylidenes [24]. More research identified a Ru(II) carbene as an effective metal center such as (PPh3)2Cl2Ru=CHCH=CPh2 [25]:

Metathesis Grubbs 1992

or (PCy3)2Cl2Ru=CHCH=CPh2 (with tricyclohexylphosphine replacing triphenylphosphine ligands) [26] culminating in the now commercially available Grubbs catalyst [27] [28]

[edit] Schrock catalysts

Schrock entered the olefin metathesis field in 1979 when he wondered how he could implement his tantalum carbenes he had been working on ever since 1974 [29]. The initial result was dissapointing as reaction of CpTa(CHt-bu)Cl2 with ethylene yielded only a metallacyclopentane but no metathesis products [30]:

Metathesis Schrock 1979

But by tweaking this structure to a PR3Ta(CHt-bu)(Ot-bu)2Cl (replacing chlorine by a t-butoxide group and a cyclopentadienyl group by a organophosphine) metathesis eventually did take place with cis-2-pentene a year later [31] and in another development certain tungsten oxo complexes of the type W(O)(CHt-Bu)(Cl)2(PEt)3 were also found to be effective [32]

Schrock carbenes for olefin metathesis of the type Mo(NAr)(CHMe2R)(OC(CH3)(CF3)2) were commercialized starting in 1990 [33] [34].

Commercial Schock catalyst

The first asymmetric catalyst followed in 1993 [35]

Metathesis ROMP Schrock 1993

with a Schrock catalyst modified with a BINOL ligand in a norbornene ROMP leading to highly stereoregular cis, isotactic polymer.

[edit] References

  1. ^ Polymerisation von Äthylen und anderen Olefinen Karl Ziegler, E. Holzkamp, H. Breil, H. Martin Angewandte Chemie Volume 67, Issue 16 , Pages 426 - 426 1955 doi:10.1002/ange.19550671610
  2. ^ A. W. Anderson and N. G. Merckling, U. S. U.S. Patent 2,721,189  (October 18, 1955)
  3. ^ Polynorbornene by Coordination Polymerization W. L. Truett, D. R. Johnson, I. M. Robinson, B. A. Montague J. Am. Chem. Soc. 1960; 82(9); 2337-2340. doi:10.1021/ja01494a057
  4. ^ Stereospecific Homopolymerization of Cyclopentene Angewandte Chemie International Edition in English Volume 3, Issue 11, Date: November 1964, Pages: 723-729 G. Natta, G. Dall'Asta, G. Mazzanti doi:10.1002/anie.196407231
  5. ^ Olefin Disproportionation. A New Catalytic Process R. L. Banks and G. C. Bailey Ind. Eng. Chem. Prod. Res. Dev.; 1964; 3(3) pp 170 - 173; doi:10.1021/i360011a002
  6. ^ Olefin metathesis - A novel reaction for skeletal transformations of unsaturated hydrocarbons Tetrahedron Letters, Volume 8, Issue 34, 1967, Pages 3327-3329 Nissim Calderon, Hung Yu Chen and Kenneth W. Scott doi:10.1016/S0040-4039(01)89881-6 
  7. ^ Olefin metathesis. I. Acyclic vinylenic hydrocarbons Nissim Calderon, Eilert A. Ofstead, John P. Ward, W. Allen Judy, and Kenneth W. Scott J. Am. Chem. Soc. 1968; 90(15); 4133-4140. doi:10.1021/ja01017a039
  8. ^ Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques Die Makromolekulare Chemie Volume 141, Issue 1, Date: 9 February 1971, Pages: 161-176 Par Jean-Louis Hérisson, Yves Chauvin doi:10.1002/macp.1971.021410112
  9. ^ E. O. Fischer, A. Maasböl (1964). "On the Existence of a Tungsten Carbonyl Carbene Complex". Angewandte Chemie International Edition in English 3 (8): 580-581. doi:10.1002/anie.196405801. 
  10. ^ A proposed mechanism for the metal-catalysed disproportionation reaction of olefins Tetrahedron Letters, Volume 12, Issue 11, 1971, Pages 789-793 Glenn S. Lewandos and R. Pettit doi:10.1016/S0040-4039(01)96558-X 
  11. ^ Mechanism of the metal-catalyzed disproportionation of olefins Glenn S. Lewandos, R. Pettit J. Am. Chem. Soc. 1971; 93(25); 7087-7088. doi:10.1021/ja00754a067
  12. ^ Possible intermediate in the tungsten-catalyzed olefin metathesis reaction Robert H. Grubbs, Terence K. Brunck J. Am. Chem. Soc.; 1972; 94(7); 2538-2540. doi:10.1021/ja00762a073
  13. ^ Crystal structure of bis(triphenylphosphine)tetramethyleneplatinum(II) Carol G. Biefeld, Harry A. Eick, Robert H. Grubbs Inorg. Chem.; 1973; 12(9); 2166-2170. doi:10.1021/ic50127a046
  14. ^ Mechanism of the olefin metathesis reaction Thomas J. Katz, James McGinnis J. Am. Chem. Soc.; 1975; 97(6); 1592-1594. doi:10.1021/ja00839a063
  15. ^ Reactions of (diphenylcarbene)pentacarbonyltungsten(0) with alkenes. Role of metal-carbene complexes in cyclopropanation and olefin metathesis reactions Charles P. Casey, Terry J. Burkhardt J. Am. Chem. Soc.; 1974; 96(25); 7808-7809. doi:10.1021/ja00832a032
  16. ^ Mechanism of the olefin metathesis reaction Robert H. Grubbs, Patrick L. Burk, Dale D. Carr J. Am. Chem. Soc. 1975; 97(11); 3265-3267. doi:10.1021/ja00844a082
  17. ^ Consideration of the mechanism of the metal catalyzed olefin metathesis reaction Robert H. Grubbs, D. D. Carr, C. Hoppin, P. L. Burk J. Am. Chem. Soc. 1976; 98(12); 3478-3483. doi:10.1021/ja00428a015
  18. ^ Olefin homologation with titanium methylene compounds F. N. Tebbe, G. W. Parshall, G. S. Reddy J. Am. Chem. Soc. 1978; 100(11); 3611-3613. doi:10.1021/ja00479a061
  19. ^ Titanium metallacarbene-metallacyclobutane reactions: stepwise metathesis T. R. Howard, J. B. Lee, R. H. Grubbs J. Am. Chem. Soc. 1980; 102(22); 6876-6878. doi:10.1021/ja00542a050
  20. ^ Synthesis of (+-)Δ9,12-capnellene using titanium reagents John R. Stille, Robert H. Grubbs J. Am. Chem. Soc. 1986; 108(4); 855-856. doi:10.1021/ja00264a058
  21. ^ Titanacyclobutanes derived from strained, cyclic olefins: the living polymerization of norbornene Laura R. Gilliom, Robert H. Grubbs J. Am. Chem. Soc. 1986; 108(4); 733-742. doi:10.1021/ja00264a027
  22. ^ Ring-opening polymerization of norbornene by a living tungsten alkylidene complex R. R. Schrock, J. Feldman, L. F. Cannizzo, R. H. Grubbs Macromolecules; 1987; 20(5); 1169-1172. doi:10.1021/ma00171a053
  23. ^ Coordinated polymerization of the bicyclo-[2.2.1]-heptene-2 ring system (norbornene) in polar media Journal of Polymer Science Part A: General Papers Volume 3, Issue 3, Date: March 1965, Pages: 895-905 Francis W. Michelotti, William P. Keaveney doi:10.1002/pol.1965.100030305
  24. ^ The ring opening metathesis polymerization of 7-oxabicyclo[2.2.1]hept-5-ene derivatives: a new acyclic polymeric ionophore Bruce M. Novak, Robert H. Grubbs J. Am. Chem. Soc. 1988; 110(3); 960-961. doi:10.1021/ja00211a043
  25. ^ Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media SonBinh T. Nguyen, Lynda K. Johnson, Robert H. Grubbs, Joseph W. Ziller J. Am. Chem. Soc. 1992; 114(10); 3974-3975. doi:10.1021/ja00036a053
  26. ^ Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts SonBinh T. Nguyen, Robert H. Grubbs, Joseph W. Ziller J. Am. Chem. Soc. 1993; 115(21); 9858-9859. doi:10.1021/ja00074a086
  27. ^ A Series of Well-Defined Metathesis Catalysts-Synthesis of [RuCl2(CHR)(PR3)2] and Its Reactions Angewandte Chemie International Edition in English Volume 34, Issue 18, Date: October 2, 1995, Pages: 2039-2041 Peter Schwab, Marcia B. France, Joseph W. Ziller, Robert H. Grubbs doi:10.1002/anie.199520391
  28. ^ Synthesis and Applications of RuCl2(=CHR')(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity Peter Schwab, Robert H. Grubbs, and Joseph W. Ziller J. Am. Chem. Soc. pp 100 - 110; 1996 (Article) doi:10.1021/ja952676d
  29. ^ Pentamethyl complexes of niobium and tantalum R. R. Schrock, P. Meakin J. Am. Chem. Soc.; 1974; 96(16); 5288-5290. doi:10.1021/ja00823a064
  30. ^ Preparation and characterization of tantalum(III) olefin complexes and tantalum(V) metallacyclopentane complexes made from acyclic .alpha. olefins S. J. McLain, C. D. Wood, R. R. Schrock J. Am. Chem. Soc. 1979; 101(16); 4558-4570. doi:10.1021/ja00510a022
  31. ^ Preparation and characterization of active niobium, tantalum and tungsten metathesis catalysts Journal of Molecular Catalysis, Volume 8, Issues 1-3, May 1980, Pages 73-83 Richard Schrock, Scott Rocklage, Jeffrey Wengrovius, Gregory Rupprecht and Jere Fellmann doi:10.1016/0304-5102(80)87006-4 
  32. ^ Multiple metal-carbon bonds. 16. Tungsten-oxo alkylidene complexes as olefins metathesis catalysts and the crystal structure of W(O)(CHCMe3(PEt3)Cl2 Jeffrey H. Wengrovius, Richard R. Schrock, Melvyn Rowen Churchill, Joseph R. Missert, Wiley J. Youngs J. Am. Chem. Soc. 1980; 102(13); 4515-4516. doi:10.1021/ja00533a035
  33. ^ Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins Richard R. Schrock, John S. Murdzek, Gui C. Bazan, Jennifer Robbins, Marcello DiMare, Marie O'Regan J. Am. Chem. Soc. 1990; 112(10); 3875-3886. doi:10.1021/ja00166a023
  34. ^ Living ring-opening metathesis polymerization of 2,3-difunctionalized 7-oxanorbornenes and 7-oxanorbornadienes by Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(O-tert-Bu)2 and Mo(CHCMe2R)(NC6H3-iso-Pr2-2,6)(OCMe2CF3)2 Guillermo C. Bazan, John H. Oskam, Hyun Nam Cho, Lee Y. Park, Richard R. Schrock J. Am. Chem. Soc. 1991; 113(18); 6899-6907. doi:10.1021/ja00018a028
  35. ^ Synthesis of chiral molybdenum ROMP initiators and all-cis highly tactic poly(2,3-(R)2norbornadiene) (R = CF3 or CO2Me) David H. McConville, Jennifer R. Wolf, Richard R. Schrock J. Am. Chem. Soc. 1993; 115(10); 4413-4414. doi:10.1021/ja00063a090