Image:Uniaxial.png
From Wikipedia, the free encyclopedia
Size of this preview: 240 × 600 pixels
Full resolution (800 × 2,000 pixels, file size: 26 KB, MIME type: image/png)
| | This is a file from the Wikimedia Commons. The description on its description page there is shown below.
|
Contents |
[edit] Summary
- Author: en:user:AndrewKepert
- Toolchain: MetaPost and TeX.
- Source: below
- Description: Illustration of a typical member of each of 7 infinite families of 3D point groups.
- Destination: en:Point groups in three dimensions.
- Permission: GFDL / CC
[edit] Source code
Instructions: on a system with a modern TeTeX or similar installed save the following two files, then run
mpost uniaxial && pdftex uniaxial
You will then need to use ghostscript or similar to make a raster image out of the pdf.
Source code author: en:user:AndrewKepert
Source code license: GPL
[edit] MetaPost source file uniaxial.mp
picture pic[];
pair pt[],pt[]n,pt[]e,pt[]w,pt[]s,pt[]ne,pt[]nw,pt[]se,pt[]sw;
pair ux,uy,uz;
path unitcircle; unitcircle=fullcircle scaled 2;
boolean front[];
color colour[];
path p[];
u=16;
ux=.4*down*u;
uy=right*2u;
uz=up*.5u;
transform xyplane[];
(0,0) transformed xyplane0 = (0,0);
(1,0) transformed xyplane0 = ux;
(0,1) transformed xyplane0 = uy;
for i = -1 step 1/16 until 1:
xyplane[i]=xyplane[0] shifted (i*uz);
endfor
theta=10;
alpha=8;
N:=6;
for i = -1 step .5 until N+1:
pt[i] = right rotated theta rotated (360i/N) transformed xyplane0;
front[i]= ypart pt[i] < ypart xyplane0;
pt[i]e = right rotated (theta+alpha) rotated (360i/N) transformed xyplane0;
pt[i]w = right rotated (theta-alpha) rotated (360i/N) transformed xyplane0;
pt[i]n = right rotated theta rotated (360i/N) transformed xyplane[.75];
pt[i]ne = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[.75];
pt[i]nw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[.75];
pt[i]s = right rotated theta rotated (360i/N) transformed xyplane[-.75];
pt[i]se = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[-.75];
pt[i]sw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[-.75];
endfor
t0=directiontime uz of (unitcircle transformed xyplane0);
t1=directiontime -uz of (unitcircle transformed xyplane0);
t2=t0+length unitcircle;
path backface,frontface;
backface:=(subpath (t0,t1) of unitcircle transformed xyplane[1])
-- (subpath (t1,t0) of unitcircle transformed xyplane[-1])
-- cycle;
frontface:= (subpath (t1,t2) of unitcircle transformed xyplane[1])
-- (subpath (t2,t1) of unitcircle transformed xyplane[-1])
-- cycle;
colour0:=(.8,.85,1);
colour1:=.8[black,colour0];
colour2:=.6[black,colour1];
def constructribbon(expr delta)=
% stuff on back face
pic1:=image( for i = 0 step delta until N-eps: if not front[i]: fill p[i]; fi endfor
fill (subpath (t0,t1) of unitcircle transformed xyplane[1/16])
-- (subpath (t1,t0) of unitcircle transformed xyplane[-1/16])
-- cycle;);
% stuff on front face
pic2:=image( for i = 0 step delta until N-eps: if front[i]: fill p[i]; fi endfor
fill (subpath (t1,t2) of unitcircle transformed xyplane[1/16])
-- (subpath (t2,t1) of unitcircle transformed xyplane[-1/16])
-- cycle;);
% all of back face
pic0:=image(fill frontface withcolor colour0;
fill backface withcolor colour1;
draw pic1 withcolor colour2);
fill backface withcolor colour0;
fill frontface withcolor colour0;
draw pic1;
clip pic0 to frontface;
draw pic0;
draw pic2;
draw unitcircle transformed xyplane[1] withpen pencircle scaled 0.2 withcolor colour1;
draw subpath (t2,t1) of unitcircle transformed xyplane[-1] withpen pencircle scaled 0.2 withcolor colour1;
enddef;
beginfig(1)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
endfor
constructribbon(1);
endfig;
beginfig(2)
for i=0 upto N-1:
p[i]:= pt[i]w--pt[i]ne--pt[i]se--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(3)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(4)
for i=0 upto N-1:
%p[i]:= pt[i]--pt[i]ne--pt[i]e--pt[i]--pt[i]sw--pt[i]w--cycle ;
p[i]:= pt[i]ne--pt[i]e-- pt[i]sw--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(5)
for i=0 upto N-1:
p[i]:= pt[i]n--pt[i]e--pt[i]s--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(6)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
p[i+.5]:= pt[i+.5]--pt[i+.5]e--pt[i+.5]s--pt[i+.5]w--cycle ;
endfor
constructribbon(1/2);
endfig;
beginfig(7)
for i=0 upto N-1:
if odd i:
p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
else:
p[i]:= pt[i]--pt[i]w--pt[i]se--pt[i]e--cycle;
fi
endfor
constructribbon(1);
endfig;
bye
[edit] TeX source file uniaxial.tex
\input supp-pdf
{\tabskip=5pt \lineskiplimit=5pt \lineskip=\lineskiplimit
\halign{\hfil#\hfil&\hfil$\vcenter{\convertMPtoPDF{#}{1}{1}}$\hfil\cr
$C_6$&uniaxial.1\cr
$C_{6h}$&uniaxial.2\cr
$C_{6v}$&uniaxial.3\cr
$D_6$&uniaxial.4\cr
$D_{6h}$&uniaxial.5\cr
$D_{6d}$&uniaxial.6\cr
$S_6$&uniaxial.7\cr
}
}
\bye
[edit] Licensing
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Dimensions | User | Comment | |
|---|---|---|---|---|
| current | 08:28, 5 July 2006 | 800×2,000 (26 KB) | AndrewKepert | (Author: user:en:AndrewKepert Toolchain: MetaPost and TeX. Source: will be uploaded Description: Illustration of a typical member of each of 7 infinite families of 3D point groups. Destination: en:Point groups in three dimensions. Permission: GF) |
File links
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):

