Image:Two dim standing wave.gif

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Illustration of a standing wave in a cavity resonator. Mathematically, this also represents a vibration mode of a rectangular drum or membrane.

Source

self-made with MATLAB

Date

05:37, 16 January 2008 (UTC)

Author

Oleg Alexandrov

Permission
(Reusing this image)

see below



Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] Source code (MATLAB)

% illustration of a standing wave in two dimensions
 
% box size
Lx = 3; 
Ly = 4; 
 
h= 0.1; % grid size
[X, Y] = meshgrid(0:h:Lx, 0:h:Ly);
 
numP_x = 2; numP_y = 3; % number of peaks in x and y
 
Z=0.5*sin(2*pi*numP_x*X/Lx).*sin(2*pi*numP_y*Y/Ly);
 
% normalize from 0 to scale
scale = 0.5;
%Z = Z - min(min(Z));
%Z = Z/max(max(Z));
 
M=11;
T=linspace(0.0, 2*pi, M); T=T(1:(M-1)); T = T + 0.5*pi/(M-1);
shift = 1;
 
for p=1:1
   for iter=1:length(T)
 
      %figure(1); clf; hold on;
 
      t = T(iter);
 
      figure(1); clf;  hold on;
      surf(X, Y, Z*cos(t));
      caxis([-1, 1]);
      shading faceted;
      colormap autumn;
 
 
      axis equal; axis off;
      axis([0, Lx, 0, Ly, -1, 1]);
 
      % viewing angle
      view(38, 42);
 
      %H=text(0, -0.3, 1.4, sprintf('(%d, %d) mode', k, p), 'fontsize', 25);
      %image(scale*((Z*sin(t)+shift)));
      %axis equal; axis xy;
      %axis off;
 
      file=sprintf('Frame%d.png', 1000+iter);
      disp(sprintf('Saving to %s', file));
      print('-dpng',  '-zbuffer',  '-r100', file);
      pause(0.2);
 
   end
 
end
 
% saved to gif with the command
% convert -density 100 -loop 1000 -delay 20 Frame1* Two_dim_standing_wave.gif
% then cropped and scaled in Gimp.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current05:37, 16 January 2008200×140 (142 KB)Oleg Alexandrov ({{Information |Description=Illustration of a standing wave in a cavity resonator. Mathematically, this also represents a vibration mode of a of a rectangular drum or [[:en:membr)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):