Trifluoromethyl

From Wikipedia, the free encyclopedia

Trifluoromethyl is a functional group in chemistry that has the formula -CF3. The naming of is group is derived from the methyl group (which has the formula -CH3), by replacing each hydrogen atom by a fluorine atom. The trifluomethyl group has a significant electronegativity that is often described as being intermediate between the electronegativities of fluorine and chlorine.[1] For this reason, trifluoromethyl-substituted compounds are often strong acids, such as trifluoromethanesulfonic acid and trifluoroacetic acid. In other cases, the trifluoromethyl group is employed to lower the basicity of organic compounds or to confer distinctive solvation properties (e.g. trifluoroethanol).

The trifluoromethyl group occurs in certain drugs and agrichemicals. This use of the trifloromethyl group dates from 1928, although research became more intense in the mid-1940s.[2] The trifluoromethyl group is often used as a bioisostere to create derivatives by replacing a chloride or a methyl group. This can be used to adjust the steric and electronic properties of a lead compound, or to protect a reactive methyl group from metabolic oxidation. Some notable drugs containing trifluoromethyl groups include efavirenz (Sustiva), an HIV reverse transcriptase inhibitor; fluoxetine (Prozac), an antidepressant; and celecoxib (Celebrex), a non-steroidal anti-inflammatory.

[edit] References

  1. ^ True, Jan E. (2003). "Electronegativities from Core-Ionization Energies: Electronegativities of SF5 and CF3". Inorganic Chemistry 42: 4437–4441. doi:10.1021/ic0343298. 
  2. ^ Yale, Harry L. The Trifluoromethyl Group in Medicinal Chemistry. Journal of Medicinal and Pharmaceutical Chemistry 1959, 1, 121-133.