User:Tomruen/Uniform polyhedron by set
From Wikipedia, the free encyclopedia
According to (Coxeter, "Uniform polyhedra", 1954), there are 4 spherical triangles with angles π/p, π/q, π/r, where (r q p) are integers:
- (2 2 p) - Dihedral
- (2 3 3) - Tetrahedral
- (2 3 4) - Octahedral
- (2 3 5) - Icosahedral
These are called Mobius triangles.
In addition Schwarz triangles consider (p q r) which are rational numbers. Each of these can be classified in one of the 4 sets above.
| Density | Triangles | |||
|---|---|---|---|---|
| 1 | (2 3 3) | (2 3 4) | (2 3 5) | |
| d | (2 2 n/d) | |||
| 2 | (3/2 3 3) | (3/2 4 4) | (3/2 5 5) | (5/2 3 3 ) |
| 3 | (2 3/2 3) | (2 5/2 5) | ||
| 4 | (3 4/3 4) | (3 5/3 5) | ||
| 5 | (2 3/2 3/2) | (2 3/2 4) | ||
| 6 | (3/2 3/2 3/2) | (5/2 5/2 5/2) | (3/2 3 5) | (5/4 5 5) |
| 7 | (2 3 4/3) | (2 3 5/2) | ||
| 8 | (3/2 5/2 5) | |||
| 9 | (2 5/3 5) | |||
| 10 | (3 5/3 5/2) | (3 5/4 5) | ||
| 11 | (2 3/2 4/3) | (2 3/2 5) | ||
| 13 | (2 3 5/3) | |||
| 14 | (3/2 4/3 4/3) | (3/2 5/2 5/2) | (3 3 5/4) | |
| 16 | (3 5/4 5/2) | |||
| 17 | (2 3/2 5/2) | |||
| 18 | (3/2 3 5/3) | (5/3 5/3 5/2) | ||
| 19 | (2 3 5/4) | |||
| 21 | (2 5/4 5/2) | |||
| 22 | (3/23/2 5/2) | |||
| 23 | (2 3/2 5/3) | |||
| 26 | (3/2 5/3 5/3) | |||
| 27 | (2 5/4 5/3) | |||
| 29 | (2 3/2 5/4) | |||
| 32 | (3/2 5/4 5/3) | |||
| 34 | (3/2 3/2 5/4) | |||
| 38 | (3/2 5/4 5/4) | |||
| 42 | (5/4 5/4 5/4) | |||
[edit] Right triangle generators
| Operation | Parent | Truncated | Rectified | Truncated dual | Dual | Cantellated | Omnitruncated | Snub |
|---|---|---|---|---|---|---|---|---|
| (Extended-1) Schläfli symbols |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
| Wythoff Symbol p-q-2 |
q | 2 p | 2 q | p | 2 | p q | 2 p | q | p | 2 q | p q | 2 | 2 p q | | | 2 p q |
| Vertex Figure | (pq) | (q.2p.2p) | (p.q)2 | (p.2q.2q) | (qp) | (p.4.q.4) | (4.2p.2q) | (3.3.p.3.q) |
| Dihedral symmetry | ||||||||
| (2 2 2) | ||||||||
| (3 2 2) | ||||||||
| (4 2 2) | ||||||||
| (5 2 2) | ||||||||
| (5/2 2 2) | ||||||||
| (5/3 2 2) | ||||||||
| Tetrahedral symmetry | ||||||||
| (3 3 2) | U1 |
U2 |
<U5> |
U2 |
U1 |
<U7> |
<U8> |
<U22> |
| (3 3/2 2) | -- | -- | -- | -- | -- | U04 |
-- | -- |
| Octahedral symmetry | ||||||||
| (4 3 2) | U6 |
U9 |
U7 |
U8 |
U5 |
U10 |
U11 |
U12 |
| (4 3/2 2) | -- | -- | -- | -- | -- | U17 |
U18 |
-- |
| (4/3 3 2) | -- | -- | -- | U19 |
-- | -- | U20 |
-- |
| (4/3 3/2 2) | -- | -- | -- | -- | -- | -- | U21 |
-- |
| Icosahedral symmetry | ||||||||
| (5 3 2) | U23 |
U26 |
U24 |
U25 |
U22 |
U27 |
U28 |
U29 |
| (5 5/2 2) | U34 |
U37 |
U36 |
-- |
U35 |
U38 |
U39 |
U40 |
| (5/2 3 2) | U52 |
U55 |
U54 |
-- |
U53 |
-- |
U56 |
U57 |
| (5 5/3 2) | -- | -- | -- | U58 |
-- | -- | U59 |
U60 |
| (5/3 3 2) | -- | U66 |
-- | -- | -- | U67 |
U68 |
U69 |
| (5/3 3/2 2) | -- | -- | -- | -- | -- | -- | U73 |
U74 |
[edit] OTHER (r>2)
| Wythoff Symbol | q | r p | p | r q | r | p q | r q | p | r p | q | p q | r | r p q | | | r p q |
|---|---|---|---|---|---|---|---|---|
| Tetrahedral symmetry | ||||||||
| (3 3 3/2) U03... | ||||||||
| Octahedral symmetry | ||||||||
| (4 4 3/2) U13 | ||||||||
| (4 4/3 3) U14 | ||||||||
| Icosahedral Symmetry | ||||||||
| (5/2 3 3) U30 | ||||||||
| (5 5 3/2) U33 | ||||||||
| (5 5/3 3) U41 | ||||||||
| (5 3 3/2) U47 | ||||||||
| (5 5 5/4) U51 | ||||||||
| (5/2 5/3 3) U61 | ||||||||
| (5 5/4 3) U65 | ||||||||
| (5/2 5/3 5/3) U70 | ||||||||
| (5/3 3 3/2) U71 | ||||||||
| (5/2 3/2 3/2) U72 | ||||||||









