User:TheTallOne/TeX

From Wikipedia, the free encyclopedia

<table class="toccolours" border="1" cellpadding="4" style="float: right; margin: 0 0 1em 1em; border-collapse: collapse; font-size: 95%; clear: right">
<tr>
<th>Qualification</th>
<th>Subject</th>
<th>Grade</th>
</tr>
<tr>
<td>GCSE</td>
<td>Religious Studies B Module 1</td>
<td>A* (90%)</td>
</tr>
</table>

This was my first go at using TeX and this went towards my Maths GCSE.

 SD = \sqrt{\frac {\Sigma\ \big( x-\overline{x}\ \big)^2}{n}}

 StandardDeviation = \sqrt{\frac {\Sigma\ \big( x-\overline{x}\ \big)^2}{n}}

And this is my second go...es

 A = \frac{1}{2} bh \times n

 A = \frac{1}{2} \times \Bigg( \frac{1000}{n} \Bigg) hn

 A = \frac{1}{2}

 A = \Bigg( \frac{1000}{2n} \Bigg) \times \frac{1000}{\left[ 2n\tan  \left( \frac {360}{2n} \right) \right]}

 b = \frac{p}{n}

 x = \frac {360}{2n}

 O = \frac{p}{2n}

 \tan x = \frac{O}{A}

 \tan \frac {360}{2n} = \frac{\frac{p}{2n}}{A}

 A \tan \Bigg( \frac{360}{2n} \Bigg) = \frac{p}{2n}

 A = \frac{p}{2n} \times \frac {1}{\left[ \tan  \left( \frac {360}{2n} \right) \right]}

 A = \frac{p}{\left[ 2n\tan  \left( \frac {360}{2n} \right) \right]}

 h = \frac{p}{\left[ 2n\tan  \left( \frac {360}{2n} \right) \right]}

 A = \frac{1}{2} \times \frac{p}{n} \times \frac{p}{\left[ 2n \tan  \left( \frac {360}{2n} \right) \right]} \times n

 A = \frac{p^2}{4n \tan \left( \frac{180}{n} \right) }


 p = 2 \pi r\,

 r = \frac {p}{2 \pi} \,

 A = \pi r^2 \,

 A = \pi \times \left( \frac {p}{2 \pi} \right)^2

 A = \pi \times \left( \frac {p^2}{4 \pi^2} \right)

 A = \frac {p^2}{4 \pi}

 \frac{p^2}{4n \tan \left( \frac{180}{n} \right) } < \frac {p^2}{4 \pi}

 n \tan \left( \frac{180}{n} \right) < \pi