Talk:Tait-Bryan rotations

From Wikipedia, the free encyclopedia

AVIATION This article is within the scope of the Aviation WikiProject. If you would like to participate, please visit the project page, where you can join the project and see lists of open tasks and task forces. To use this banner, please see the full instructions.
Start This article has been rated as Start-Class on the quality scale.

There's a link to Tait, but nothing about who Bryan is or was. That should be here. Michael Hardy 22:53, 1 Mar 2005 (UTC)

Are the rotations clockwise or counterclockwise? i.e. does it use the right-hand-rule or not? ~a 21:46, 17 October 2005 (UTC)

  • By convention, all positive rotations are counter-clockwise as seen from the "end" of the respective axis towards the origin. That is, the right-hand-rule (or "right-hand-threaded-screw-rule") does apply. Sergey Khantsis 18:58, 12 November 2005 (UTC)

This was on the page:

Suggested change:

In geometry, Tait-Bryan angles are three angles used to describe a general rotation in three-dimensional Euclidean space by three successive local rotations, once about the local x-axis, once about the new local y-axis, and once about the new local z-axis.
Tait-Bryan differs from Euler angle rotations as Euler angles are applied to the fixed global coordinate system for each successive rotation.

Charles Matthews 10:35, 19 November 2005 (UTC)

I can't be sure, but there is a George Bryan (mathematician) who corresponded briefly with Tait in 1901. Maybe that is the man. (No relation to the 18th century politician George Bryan) Urhixidur 22:23, 9 November 2006 (UTC)


I removed the examples of pitch and yaw. Both examples were of different concepts. The pitch example used angle-of-attack as an example of a pitch angle. The yaw angle example got mixed up and said that aircraft try to minimise their yaw angle to reduce drag (i.e., got mixed up with sideslip angle). If this were true, all aircraft would fly north. I also removed two See Alsos (Pitch Angle points to a physics article, and Roll Angle doesn't exist). Andy Ross 12:19, 22 February 2007 (UTC)

Added to first paragraph to point out these angles are a sub-set of the Euler angles (as shown in the paragraph dealing with their definition. Added a reference to the Wright-Patterson tech report WADC 58-17 which provides an excellent summary of the various methods of describing the orientation of one coordinate system with another i.e. 3 parameter: "Euler angles", 4 parameter: "Quarternions" ,9 parameter " direction cosines.

A great online reference dealing with all 3D rotations is http://ai.stanford.edu/~diebel/attitude/attitude.pdf. Won't take up editing this article yet, but it seems there are some inconsistencies. -FW