Szász-Mirakyan-Kantorovich operator

From Wikipedia, the free encyclopedia

In functional analysis, a discipline within mathematics, the Szász-Mirakjan-Kantorovich operators are defined by

[\mathcal{T}_n(f)](x)=ne^{-nx}\sum_{k=0}^\infty{\frac{(nx)^k}{k!}\int_{k/n}^{(k+1)/n}f(t)\,dt}

where x\in[0,\infty)\subset\mathbb{R} and n\in\mathbb{N}.[1]

[edit] See also

[edit] References

[edit] Footnotes

  1. ^ Walczak, Zbigniew (2002). "On approximation by modified Szasz-Mirakyan operators". Glasnik Matematički 37 (57): 303–319. 
This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.