Szász-Mirakyan-Kantorovich operator
From Wikipedia, the free encyclopedia
In functional analysis, a discipline within mathematics, the Szász-Mirakjan-Kantorovich operators are defined by
where
and
.[1]
[edit] See also
[edit] References
- Totik, V. (June 1983). "Approximation by Szász-Mirakjan-Kantorovich operators in
(p > 1)". Analysis Mathematica 9 (2): 147-167. doi:. MR85h:41053, Zbl 0513.41012. (Russian)
[edit] Footnotes
- ^ Walczak, Zbigniew (2002). "On approximation by modified Szasz-Mirakyan operators". Glasnik Matematički 37 (57): 303–319.
=ne^{-nx}\sum_{k=0}^\infty{\frac{(nx)^k}{k!}\int_{k/n}^{(k+1)/n}f(t)\,dt}](../../../../math/6/1/8/618ee8426083b5d2eb5fe8c849ad6bbd.png)

