Sylvester's formula

From Wikipedia, the free encyclopedia

In matrix theory, Sylvester's formula, named after James Joseph Sylvester, expresses matrix functions in terms of the eigenvalues and eigenvectors of a matrix. It is only valid for diagonalizable matrices; an extension due to Buchheim covers the general case.

Contents

[edit] Statement

Let A be a diagonalizable matrix with k distinct eigenvalues, λ1, …, λk. The Frobenius covariants Ai are defined by

 A_i = \prod_{j=1 \atop j \ne i}^k \frac{1}{\lambda_i-\lambda_j} (A - \lambda_j I). [1]

The Frobenius covariants Ai are projections on the eigenspace associated with λi. They can be found by diagonalizing the matrix A. using the eigendecomposition A = SDS−1. First, suppose that A has no multiple eigenvalues. Let A = SDS−1 be the eigendecomposition of A where the diagonal matrix D has the eigenvalues λ1, …, λk (in that order) on the diagonal. Denote the ith column of S by ci and the ith row of S−1 by ri; ci and ri are left and right eigenvectors of A). Then Ai = ciri. If A has multiple eigenvalues then Ai = Σj cjrj, where the sum is over all rows and columns associated with the eigenvalue λi.[2]

Now, let f: DC with DC be a function for which f(A) is well defined; this means that every eigenvalue λi is in the domain D and that every λi with multiplicity mi is in the interior of the domain with f (mi − 1) times differentiable at λi.[3] Then, Sylvester's formula states that

 f(A) = \sum_{i=1}^k f(\lambda_i) A_i. [4]

[edit] Example

Consider the two-by-two matrix:

 A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}.

This matrix has two eigenvalues, 5 and −2. Its eigendecomposition is

 A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}.

Hence the Frobenius covariants are

 \begin{align}
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} \\
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}.
\end{align}

Sylvester's formula states that

 f(A) = f(5) A_1 + f(-2) A_2. \,

For instance, if f is defined by f(x) = x−1, then Sylvester's formula computes the matrix inverse f(A) = A−1 as

 \frac{1}{5} \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix} = \begin{bmatrix} -0.2 & 0.3 \\ 0.4 & -0.1 \end{bmatrix}.

[edit] Notes

  1. ^ Horn & Johnson, equation (6.1.36)
  2. ^ Horn & Johnson, page 521
  3. ^ Horn & Johnson, Definition 6.4
  4. ^ Horn & Johnson, equation (6.2.39)

[edit] References

  • Horn, Roger A. & Johnson, Charles R. (1991), Topics in Matrix Analysis, Cambridge University Press, ISBN 9780521467131 .

[edit] External links