Talk:Sway bar
From Wikipedia, the free encyclopedia
Could we get a picture in here?
It should be stated more clear that it is the difference between roll stiffness of front and rear axes which affects the weight transfer between the 4 wheels.
Moreover, the total weight on the two right wheels (and the total for two left wheels) is completely determined from statical considerations, thus does not depend on stiffness of the parts of suspension. Similar argument works for weight on the front axis vs weight on the rear axis. In particular, the explanation of effect of roll stiffness on over/understeer is not only unclear, but completely bogus. (In fact, it is slightly better [by being unclear ;-] than the [explicit] nonsense explanation in the external link.)
One expects that one needs more detailed consideration of distribution of weight between four wheels, and the fine effects of these distributions on "some particular angles" of these wheels to relate under/oversteer to roll stiffness. The effect cannot be as direct as in (hinted by) the article. ILYAZ:71.132.238.123 09:33, 2 June 2006 (UTC)
[edit] Roll axis
The 198.208.159.17 6th October edit here perpetuates a terminology problem, that my previous attempt had avoided. According to the SAE the roll axis joins the two roll centres. Fair enough. BUT the sprung body does not necessarily roll about the roll axis. It is a bad name. Now, on rereading my previous definition I'm not actually very happy with that either, it seems to me that first of all you have to define what you mean by a roll axis (in a 6dof system) and then you can perhaps describe where that axis is in the general sense. Greglocock 04:42, 9 October 2006 (UTC)
- and, beyond that, why does this article use centrifugal force as the force-at-radius for the torque in the roll? it isn't a real force. —Preceding unsigned comment added by 68.97.47.25 (talk • contribs) 04:46, 13 June 2007 (UTC)
-
- Take a large weight, on a string. Get a friendly giant to whirl it around his head. Now, cut the string and then you hold one piece of string in each hand. Giant----you-----weight Get the giant to whirl the large weight around. Are you telling me that you only feel a force in one hand? or that forces you feel are in the same direction? Obviously not, you will feel one force in one hand towards the centre, and an equal (ish) and opposite force in the other hand, towards the weight. Pedantic factoids like "there is no such thing as centrifugal force" are no substitute for learning. Greglocock 05:24, 13 June 2007 (UTC)
[edit] Questions for expert
A graphic, even a rough hand sketch, would help immensely in understanding the physics involved. How is the bar attached to the suspension? Does the bar itself get bent and stretched or is some other mechanism used to provide the load transfer? What kind of materials are they made out of? In the drawbacks section, it states that an overly aggressive sway bar would cause the inside tires to lift up, but isn't this the same problem that a sway bar is supposed to address? That is, a stiffer bar would result in more load transfer, keeping the inside tires more firmly planted. This of course plays into the other drawback mentioned, which is loss of independence. Ham Pastrami 09:47, 13 September 2007 (UTC)
- Holy crap this article is confusing. Who knew a simple piece of metal could give me a headache —Preceding unsigned comment added by 68.191.176.47 (talk) 15:17, 5 October 2007 (UTC)
1) typically but not neccesarily via a link 2) it twists, mostly 3) heat treated fairly good quality steel 4) No. Greglocock 08:46, 9 October 2007 (UTC)

