Stieltjes moment problem
From Wikipedia, the free encyclopedia
In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions that a sequence { μn, : n = 0, 1, 2, ... } be of the form
for some nondecreasing function F.
The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).
Let
and
Then { μn : n = 1, 2, 3, ... } is a moment sequence of some probability distribution on
with infinite support if and only if for all n, both
{ μn : n = 1, 2, 3, ... } is a moment sequence of some probability distribution on
with finite support of size m if and only if for all
, both
and for all larger n
The solution is unique if there are constants C and D such that for all n, |μn|≤ CDn(2n)! (Reed & Simon 1975, p. 341).
[edit] References
- Reed, Michael & Simon, Barry (1975), Fourier Analysis, Self-Adjointness, vol. 2, Methods of modern mathematical physics, Academic Press, p. 341 (exercise 25), ISBN 0-12-585002-6

![\Delta_n=\left[\begin{matrix}
1 & \mu_1 & \mu_2 & \cdots & \mu_{n} \\
\mu_1 & \mu_2 & \mu_3 & \cdots & \mu_{n+1} \\
\mu_2& \mu_3 & \mu_4 & \cdots & \mu_{n+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mu_{n} & \mu_{n+1} & \mu_{n+2} & \cdots & \mu_{2n}
\end{matrix}\right].](../../../../math/1/b/7/1b764810b8072fd387e1882d634a9b96.png)
![\Delta_n^{(1)}=\left[\begin{matrix}
\mu_1 & \mu_2 & \mu_3 & \cdots & \mu_{n+1} \\
\mu_2 & \mu_3 & \mu_4 & \cdots & \mu_{n+2} \\
\mu_3 & \mu_4 & \mu_5 & \cdots & \mu_{n+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mu_{n+1} & \mu_{n+2} & \mu_{n+3} & \cdots & \mu_{2n+1}
\end{matrix}\right].](../../../../math/4/e/4/4e4885e97d63d7433438f7330d9e2eb3.png)



