Talk:Steam car
From Wikipedia, the free encyclopedia
[edit] Ted Pritchard
Why not mention Ted Pritchard and his steam car?
- Why not indeed - who is brave enough to tackle it? (wish you people would sign and date your comments)--John of Paris 18:32, 26 November 2006 (UTC)
[edit] Cugnot's Fardier
I don't know if this can really be described as "the first step in independent transport". It was built for the French army for dragging cannons around. Not the sort of thing in/on which you would take your girl out for a joyride. --John of Paris 18:34, 7 February 2007 (UTC)
[edit] Removed link
Enginion AG link redirects to some other website.
[edit] (90 percent efficiency?
Whilst a boiler may have 90% efficiency, the amount of heat converted by the engine to mechanical work is nothing like this high. It is unlikely that the overall thermal efficiency will be any better than the 30% quoted for the Otto cycle. For the simple plant which could be accommodated within the space available in a road vehicle, even this appears hopeful.
Space limits preclude a condenser, so the minimum cycle temperature will be 100 degrees Centigrade. External combustion must have a lower cycle temperature than the flame temperature, and if long boiler life is required, would not be operated much above 800 degrees. The Carnot cycle efficiency is, therefore 35%. It is difficult to see how 90% efficiency could be achieved within the constraints of the Second Law of Thermodynamics. Gordon Vigurs 12:34, 17 February 2007 (UTC)
- Space limits certainly do not preclude a condenser! You really should verify your facts before making such affirmations. Many steam cars including Doble's and Ted Prichard's had a condenser taking the form of a fan-cooled radiator. I won't enter into this arcane "efficiency" debate, a time-honoured red herring that does not begin to explain why steam cars have always given a very good account of themselves when compared with internal combustion as regards fuel consumption, and emissions-wise have generally proved far superior. Surely this begs more searching questions as to why this should be in spite of all this "received theory".--John of Paris 17:39, 18 February 2007 (UTC)
In general, the condensers fitted served to recover water or avoid excessive emissions, rather than reduce minimum cycle temperature. I think you are confusing combustion efficiency (which for all forms of extermal combustion is high) with thermal efficiency.
Ok, let's drop the minimum cycle temperature to 30 degrees; that yields a Carnot cycle efficiency of 1-303/1073=72%, still a fair way from the 90% claimed. The only Rankine cycles that approached this were mercury/steam binary cycles. Steam alone cannot achieve it because the maximum temperature is well above the critical point, so the isothermal heat addition needed to even approach the Carnot efficiency is not possible. I am intrigued to hear that these vehicles are not constrained by the Second Law of Thermodynamics, what other fundamental physical laws do not apply to their operation? Gordon Vigurs 09:22, 19 February 2007 (UTC)
- First of all, I don't know who put that 90% figure in the article; I for one would not defend it and am for taking it out (but the whole paragraph will need rewriting). Overall efficiency claimed for steam cars is nowhere near that or even the 72% you suggest. It probably applies to boiler efficiency, which can reach almost 90% in some cases, but is usually somewhat lower. When you come to overall efficiency, it's a different kettle of fish altogether. Ted Pritchard in a paper circulated privately, claimed 10-13% for his steam car whilst adding that the figures given of 30-40% claimed for an Otto cycle car are "erroneous" and nearer to 10%. A diesel is better giving around 40% at constant full load; the problem is that full load does not apply to conditions in automotive service with varying load, idling etc. which Ted believes probably brings diesel overall efficiency down to around 16%. However the advantage of a modern steam unit is its intrinsic ability to store power. Doble and Pritchard cars had an automatic control box sensitive to pressure and temperature; it cut the burner or the water feed in and out (which notably meant lower, not higher consumption in urban conditions). No I am not confusing thermal efficiency with fuel efficiency although, the latter should logically derive from the former. Nor would I ever claim that steam vehicles are not constrained by any law of nature. What I do say is that theory should closely reflect practice. When it does not seem to do so, either the theory is wrong, or incomplete, or wrongly interpreted. The application of pure theory can be relevant when seeking a fresh appoach to a specific technology but is only part of the story when developing hardware or when it comes to comparing (and choosing) rival technologies where many more parameters are involved and the proof of the pudding is always in the eating. Reality is always more complicated - that's why theories get reassessed from time to time. Did Carnot have the whole truth? He believed that heat is a substance called caloric.--John of Paris 14:53, 19 February 2007 (UTC)
It was only the figure of 90% which caused me concern, the rest of the article is fine.Gordon Vigurs 09:15, 20 February 2007 (UTC)
The point about 'practical' efficiency and 'theoretical' efficiency is well made and is highly relevant to this article. Mis-match between the two usually arises from incomplete definition of the problem, the use of an inappropriate approximation to theory, or the current problem (e.g. deciding how long an engine should run before it requires overhaul) is not readily amenable to theoretical analysis, and is better approached empirically. Most engineering problems tend to be of this latter, theoretically messy nature.
The reduced transmission losses, insensitivity to the variable loading conditions inherent in road vehicles, particularly when the vehicle is stationary, all favour steam propulsion. They also serve as arguments against road transport in general - but that's a different issue. I'm not sure that Carnot was in fact responsible for the Carnot cycle, it may well have been named in honour of him as the first to recognise the fact that heat engines must reject a proportion of the supplied heat energy in order to work at all.Gordon Vigurs 14:18, 7 March 2007 (UTC)
- I think we can say that it is more than an honorific title and that Carnot was responsible for defining the cycle in the first place along with laying out the First Law [1]. I think the mismatch you speak of stems from more than "inappropriate approximation". It comes from polarising on a single viewpoint, ill-adapted to the intricacies of the steam process, where heat transfer, fluid dynamics, boiler chemistry and tribology are of equal importance and crucial to getting the complete picture. For this holistic approach it is instructive to study the research of James Watt, D.K. Clark, Anatole Mallet, Abner Doble, André Chapelon, and more recently L. D. Porta, who had an extraordinary multi-faceted vision of the question. Ted Pritchard is also worthy of close study, if you can get hold of his writings which are now off the web since the "pretty flowers" rehash of his site --John of Paris 10:33, 20 March 2007 (UTC)
Actually, Carnot is noted for the Second Law. The details of how one approaches the maximum cycle efficiency are not really relevant. It is obvious that the engineering difficulties of getting anywhere near the Carnot cycle efficiency are very great indeed. The Carnot cycle efficiency is derivable from the observation that heat always conveys from the hot body to the cold body, unless external work is added. Greater efficiency implies heat will flow spontaneously from cold to hot body, which is contrary to observation. If fuel were converted to work in a more ordered manner than heat, e.g. in a fuel cell or in muscle tissue, then the Carnot cycle limitation would not apply, and higher efficiency would be possible. Actual steam engines use various forms of superheated Rankine cycle, which are well below Carnot cycle efficiency, because the operate at temperatures well above the critical point. The only Rankine cycle engines which even approached Carnot cycle efficiency were the experimental mercury/steam binary cycles built in the 1920s. I do indeed polarise on a particular viewpoint; it is the viewpoint which does not tolerate the possibility of perpetual motion machines of either the first or second kind. Gordon Vigurs 09:32, 10 April 2007 (UTC)
- I don't think any of the authors I cited would have tolerated the possibility of perpetual motion. What I do not understand is the reason for what seems to be an over-wide gulf between theory and practice.--John of Paris 16:30, 11 April 2007 (UTC)
[edit] Technology: 90% efficiency; ECE - more on.
First point: I think we should do something about that 90% efficiency claim. I don't know who put it in but perhaps the person responsible would be good enough explain his reasons for doing so, otherwise I am for swiftly deleting it. I think I can see where it comes from: in the steam engine article under the heading "Efficiency" there is the following statement: "It is also possible to capture the waste heat using cogeneration in which the residual steam is used for heating. It is therefore possible to use about 90% of the energy produced by burning fuel—only 10% of the energy produced by the combustion of the fuel goes wasted into the atmosphere." This is fine as far as it goes, but he figure appears to have been uncritically "lifted" (please correct me if I am wrong)and inserted into this article where it now smacks of POV and quackery. My second point is that, as I have already made clear, I am very uneasy about the term "external combustion" which I am dismayed to see invading all the steam articles. I suspect it comes from pure pedantry (an opposite had to be coined to "Internal"). IMO, the term EC is inadequate to describe the steam process and a source of confusion to lay persons trying to inform themselves about this already grossly misunderstood technology. Contrary to what one we are being led to believe, External combustion is not even a generally accepted definition of the steam process nor is it a convenient means of describing it (again IMO) in the way IC is for Otto cycle, diesel engines or gas turbines. Whilst you will find internal combustion in any dictionary - technical or otherwise, the same is absolutely not true of EC and I for one strongly oppose the adoption of this term in any general overview of a steam process.--John of Paris 10:13, 24 May 2007 (UTC)
- Steam engines (systems) can be made to waste less energy than ICE's. So yes, this is a measure of 'efficiency' Pendragon39 03:01, 6 July 2007 (UTC)
Please expand on this--John of Paris 15:52, 7 July 2007 (UTC)
- Steam engines are better able to use temperature differentials to create mechanical energy. The most efficient device in this regard is the Stirling engine and the least efficient is internal combustion. The 90% figure would not be the % of heat converted into mechanical energy, but the overall efficiency of the system. Sort of like the efficiency ratings for furnaces.Pendragon39 04:03, 8 July 2007 (UTC)
[edit] 90%, 60%, 42%
I have lowered the thermal efficiency rating to 60% as per the steam engine article. If using a gas turbine is not applicable to the steam car, the next level is 42%. Considering the development of hybrids and future methods of waste heat recovery, these numbers are of limited value. Also noted: some Wiki articles place ICE efficiency at 25% Pendragon39 16:06, 8 July 2007 (UTC)
- You mean a steam turbine don't you? The only non-hybrid application of a gas turbine to a steam generator I know of was in the Velox supercharged boiler used in electricity generators, ships and in one case a railway locomotive. The combustion gases under pressure facilitated heat transfer and only after passing through the steam generator did they work a low pressure turbo-charger but that had nothing to do with power delivery. The feedwater was also circulated rapidly under pressure. What I keep trying to hammer home is that the steam engine is a totally different ball park from IC or Stirling, fuel is burnt only to produce and maintain steam pressure, so what counts is the use of STEAM PRESSURE - IT IS NOT A HEAT ENGINE as such, whatever Carnot etc may have said. Of course heat is needed to make and maintain the steam pressure but any efficiency calculation/estimation has to take into account the whole system. 90% efficiency (the highest ever attained to my knowledge) was claimed for the Velox boiler as to its efficiency in boiling water, however overall efficiency of the Velox locomotive was little better than an ordinary steam locomotive due to inefficient use of the steam once generated. That's why there are no Velox boilers today. Doble's boiler had much in common including the advantage of thermostatic and pressure control which meant that the boiler only produced steam and burnt fuel when necessary (About 60% max of the time - no idling). This makes any efficiency comparison with IC etc extremely difficult except over a period of time in performing similar work.--John of Paris 12:02, 10 July 2007 (UTC)
Overall system 'efficiency' is a measure of the amount of energy wasted vs the amount used. This is different from thermal efficiency, which measures % of input energy converted to mechanical output. Saying a steam boiler uses 90% of its energy to produce steam doesn't help us evaluate the next step: the conversion to mechanical energy. By the same token, thermal efficiency does not help us evaluate the overall efficiency of a system, in this case a steam automobile. Do we use a conventional drivetrain or a series hybrid to store and transmit power to the wheels? Do we employ a stirling engine to capture more of the waste heat or otherwise make use of it? Its not clear to me if this article is to describe existing models or potential ones, based on current technology. A heat engine is a device designed to produce mechanical energy from a temperature differential. A boiler by itself is not a heat engine, but a piston or turbine driven 'steam device' is. The example taken from the steam engine article described using a gas turbine, then attempting waste heat recovery using steam. Not that such a system could reasonably be fit into a car! Pendragon39 11:16, 10 July 2007 (UTC)
- What "fits into a car" is high temperature and high pressure differentials. The two are intimately linked, but separate considerations - a point which tends to be largely ignored in present-day writings. A steam unit is self-contained, needing no hybrid attachments, gearbox nor clutch, being capable of starting from 0 rpm. Once the steam is generated, the problem is one of fluid dynamics and avoiding leakage plus maintaining temperature at a level sufficient to avoid condensation - at least during the working cycle. --John of Paris 12:02, 10 July 2007 (UTC)
- Okay, storing and extracting energy from steam are problems. How are these best solved? Have prototypes been developed? What is their expected efficiency? This article is about a car, hence the numbers should relate to what is wasted and what is used to turn the wheels. Then compare with a conventional ICE vehicle or hybrid Pendragon39 21:58, 10 July 2007 (UTC)
- Just a thought on the IC process, explosions and the like. We are still talking about the EFFECT of heat on a gas. And what is happening? Rapid temperature change gives rise to rapid pressure change and vice versa. The heat generated in a diesel engine or a fire piston comes from a rapid pressure hike; that ignites the fuel creating a still greater pressure hike: that's what does the work whatever the final temperature. In contrast, a steam engine, reciprocating or turbine, does not care whether it receives hot steam or compressed air at room temperature. In the boiler/steam generator, the effect of the heat applied is to continuously convert the water into steam; the more water you convert in a confined space, the higher the pressure that results and that's what does the work. Loss of pressure due to work will bring down steam temperature and condense it turning it back into water. this is why you need either to start the steam cycle at very high temperature or to resuperheat it at an intermediate stage enabling it to continue to work at lower pressure. Temperature and pressure are therefore complementary, but temperature is always the "slave" to pressure.--John of Paris 10:40, 13 July 2007 (UTC)
- Increasing the pressure increases the boiling point of water, which increases the amount of energy stored as steam. At this step of the process, heat generated through combustion was exchanged, not converted. An ICE operates on the most extreme temperature differential, that of combustion/detonation - to convert that energy into mechanical output. Thus a steam engine can convert heat > mechanical at a lower temperature differential. In terms of thermal efficiency it is midway between ICE and Stirling. Pendragon39 14:50, 13 July 2007 (UTC)
- Yes, heat is exchanged - and the water converted into steam.--John of Paris 12:16, 17 October 2007 (UTC)
[edit] Dubious assertion about efficiency of engine
The article makes the following assertion that I consider to be dubious:
- While Gasoline-powered ICE cars have an operational thermal efficiency of 15% to 30%, automotive steam engines are capable of only about half this efficiency.
It is dubious because the article does not mention that IC Engines are inefficient because they must run constantly, even when the vehicle is not moving - that is, the engine must "idle". Steam engines do not need to do this. For a steam-power car, the only consumption of energy when it is not moving is to replace any energy that is lost as heat to the environment. Thus, steam cars consume far less energy when the vehicle is not moving than a comparable vehicle with an IC engine. It is therefore misleading for the article to assert that the IC engine is more efficient without qualifying this.
Another reason to question the statement is the fuel efficiency statement for the Dobie given later in the article:
- the Doble managed to achieve 15 miles per gallon (18.8 litres/100 km) of kerosene despite weighing in excess of 5,000 lbs (2.27 tonnes).
While this looks fairly inefficient, we must consider that this is a vehicle that weighed as much as a decent-sized modern truck. Had an engine with the Dobie design been built into a modern car weighing about 1,200 kg, and the Dobie engine been built smaller to suit the car, the Dobie engine would likely have had no trouble getting a fuel economy figure below 10 litres/100 km. As it is difficult to make such a comparison, a more reasonable comparison would be to show the fuel economy figures for an ICE car of the same mass from the same era. It is very unlikely that such an ICE vehicle that was contemporaneous to the Dobie would have had better fuel economy figures. --B.d.mills 01:28, 11 July 2007 (UTC)
- Agree. What I am trying to do, strange as it may seem, is to bring some sort of balance into this debate. It does seem to me that the best candidate for steam technology would be a truck of some kind as suggested by James Crank[2]. The arguments trotted out by the IC fraternity are always on based on "thermal" efficiency: 5% versus 30% or whatever - the only factor ever considered.--John of Paris 10:55, 13 July 2007 (UTC)
-
- The editor who entered this number has not provided an explanation. The steam engine article does not support it as far as I can tell Pendragon39 14:56, 13 July 2007 (UTC)
- I am at present working on a new version of the steam engine article. just give me a bit more time that's all.--John of Paris 22:02, 14 July 2007 (UTC)
-
- Careful. "Even allowing very optimistic efficiencies as high as 80% for as few as five of the basic stages in the superheating/condensing steam cycle, you still end up with a thermal efficiency below 33%, a level at which petrol engines have been working for years. In fact steam efficiencies are generally much lower than this [80%], especially in condensors: the best of the modern American steam carswere quoted as yielding maximum thermal efficiencies of 26%...without auxiliary loads...[or]20% at the driving wheels...." From L.J.K. Setright, "Steam: The Romantic Illusion", in Northey, Tom, ed. World of Automobiles (London: Orbis, 1974), Volume 19, p.2173. While I don't doubt things are better now, Setright points out numerous drawbacks, all of which seem formidable to me; the article addresses few of them, seeming to accept press releases at face value. Trekphiler 14:08, 12 October 2007 (UTC)
-
-
- I agree that the net thermal efficiency of automotive steam systems has (generally) been no more than 1/2 that of modern internal combustion automotive systems. However, I would like to emphasize that this is not inherent in the physics of steam power. I've believed for several years now that the rapid advances in materials technology will soon permit the construction of automotive steam systems with performance that exceeds existing internal combustion automotive systems. The best example on the scene now are the engines created by Cyclone Power Technologies. Their automotive steam system was measured at 36% peak net thermal efficiency. More importantly, there are many other qualities of their steam system that make it superior to the internal combustion engine for automotive use. These include optimal efficiency at part load, maximum torque at starting so no transmission required and higher running torque (two stroke vs. four stroke)... in fact, the torque profile in general is more suited to automotive use, superior power to weight ratio at 40% the weight of a Diesel automotive system of equal power, lower emissions with the Cyclone passing CA smog standard for the year 2020 and with no emissions controls equipment, lower production costs, and the ability to use almost any liquid or gaseous fuel (and some solid fuels as well) with far fewer refining requirements than internal combustion automotive engines. There is far more potential for steam power for automotive propulsion that most people understand. Devilishadvocate 02:12, 4 November 2007 (UTC)
-
- Agree with that in principle. However I have visited the recommended site and was a little dismayed to find that I came out not much wiser than when I went in. The so-called "tech pages" are no more than publicity blurbs. Much more technical information needed.--John of Paris 12:45, 4 November 2007 (UTC)
John of Paris, if you're interested in learning more about the Cyclone then I recommend referencing the discussion board at steamautomobile.com. The inventor of the Cyclone, Harry Schoell, is very active at the site. There is one extensive posting in particular that provides a lot of technical details on the Cyclone. Also, Mr. Schoell is generally very willing to answer questions on the technology.Devilishadvocate 01:03, 5 November 2007 (UTC)
- Thanks for that. After my last posting I decided I had been a bit hasty and did go back to look more closely and follow other links. Much more interesting than I thought - the website is not very well organised which tends to deter a new visitor; however seeing the names of Jim Crank and George Nutz as technical advisers certainly brightened up the prospects. I have downloaded the patent document and am now wading through it after first listening to the radio interview. Anyway if you wish to discuss this matter further, it might be better to do so on my talk page rather than clog this one up. Cheers,--John of Paris 13:33, 5 November 2007 (UTC)
[edit] Dream Steam hybrid?
If I was to imagine a modern steam car, I would use a steam turbine to drive a generator. Eliminate the transmission and differential in favor of direct drive electric motors. It would have batteries for electrical energy storage and super-capacitors for supplemental storage or to improve torque. A Stirling engine could be used to extract additional energy from waste heat and eliminate the need for a condenser. Power from the Stirling would be used for accessories or fed into the electrical system.
The boiler would ideally use cheaper fuels and be as clean burning as possible.
It's just a dream of course, manufacturers will not move away from gasoline/diesel engines. To do so would entail engineering, design and retooling costs Pendragon39 16:55, 13 July 2007 (UTC)
- A low power Stirling engine working as a pump might just be used to condense the steam but there are plenty of efficient ways to do that. As for transmission, don't bother with hybrids the whole point of a steam engine is that it starts away at 0 - (I said ZERO) rpm. that said you will need a differential but that's no problem. The boiler can be made to burn anything combustible. You who live in Melbourne, just get into touch with Pritchard power[3], they will put you in the picture.--John of Paris 21:56, 14 July 2007 (UTC)
-
- Do you have any concept how inefficient turbines are for stop-&-go driving? Their throttle response would be hideous. You'd be better advised just to use a pure Stirling, which will also burn anything... Trekphiler 14:12, 12 October 2007 (UTC)
- Ahem, the turbine was to drive a generator. It is the electric motors/regenerative braking that drive the vehicle. As with hybrids, this allows the power plant to run at its highest efficiency. The aim for hybrid systems is to decouple power generation from its consumption. For most systems, this entails the use of electricity as the energy storage and retrieval mechanism. Pendragon39 (talk) 18:31, 3 January 2008 (UTC)
- Do you have any concept how inefficient turbines are for stop-&-go driving? Their throttle response would be hideous. You'd be better advised just to use a pure Stirling, which will also burn anything... Trekphiler 14:12, 12 October 2007 (UTC)
- The only steam turbine car I am aware of is the Steam Car Challenge vehicle. I hardly think the group will be worrying about stop & go driving for the moment. So I would ask you, when will the next British Stirling Car Challenge be taking place? Let's hope one day soon. I for one wish all power to the elbows of people developing the Stirling engine if that can help cut down noise and pollution. As for steam, the evidence is overwhelming that it can do at least that. We may well be pursuing a "romantic dream" but in today's worsening energy situation we had better keep ALL our options open and all technologies up to date.--John of Paris 00:23, 13 October 2007 (UTC)
- - Moreover in the last two statements just added to the the Technology section (By the way, are they both by Setright?) there are several factual errors plus some incorrect use of terminology (for instance, you don't "feed" a boiler with a fan). I don't know Setright's article and would like to read it. That said he seems to be referring to the 1970s projects about which there is very little available information; from what I can gather, in spite of appearing very hi-tech they had a number of retrograde features due to a too-brief R&D period coupled with general loss of "steam culture". To my mind, the most promising of the more recent steam car developments were Doble's contribution to the 1950s Paxton car project and Ted Pritchard's prototypes of the 1960s and 70s. They are the references we should be studying rather than Setright who appears to come from an essentially hostile point of view.--John of Paris 10:18, 13 October 2007 (UTC)
[edit] Consider boiler as part of the engine?
This question was posed in the summary of changes to this article. I would say the boiler should be considered as part of the steam car Pendragon39 15:13, 26 August 2007 (UTC)
- Agree of course, except to say you haven’t answered the question as to whether the changes made to the article were worthwhile. The problem is wider than the steam car: once again, as already stated in these discussions and others, my problem is with the term External Combustion Engine (ECE) which in IMO does not adequately represent the sum of the two basic components. In an IC unit we have one component, power being developed inside the engine, also delivered by the engine - that's easy, whereas in a steam power unit (?) it’s not just an “engine” we are dealing with, but a composite power unit consisting of two basic components, power being developed by and eventually stored in the generator/boiler, then delivered by the engine. The problem is that you can mate a variety of different boiler types with a variety of different of engine types — in any instance, the sum of the whole is what? A “steam unit”? A “steam drive”? or something else? - not an “engine” at any rate.--John of Paris 16:33, 26 August 2007 (UTC)
-
- I don't have an opinion regarding the term ECE. "Steam unit" and "power plant" are alternative terms that could be used. The main focus of the article should be to briefly describe the main components of various steam cars - from existing models and prototypes. The emphasis is on the car and its overall performance, not its components. The reader can always follow the links if they need more details Pendragon39 22:05, 26 August 2007 (UTC)
Well daft as it may sound, I have just taken the two alternative terms and re-edited the paragraph on the Paxton Phoenix in the "Aftermath" section of the Doble Steam Car article. - Thanks - why didn't I think of that before? It makes life so much easier. It's not a question of more details, what I am talking about is very very basic: people can follow links until they are cross-eyed, but as long as they do so with a particular (IC) mindset, they are unlikely to fully latch onto what they are reading about. Of course the car's overall performance is important, but unless you give an idea of the means employed to achieve that, what is the point? It's not about components per se, but strange as it may seem (and I speak from experience), many people have not even begun to grasp the simple fact that to power a car (or anything else) by steam, you need two basic components (or ingredients, or whatever) of equal importance, one called a boiler (or steam generator) and the other an engine (or expander) - many tend only to see an "engine" and come up with the strangest notions on how it's supposed to work.John of Paris (talk) 08:59, 25 November 2007 (UTC) (Sorry, forgot to sign at the time, but it must have been 27 August 2007)
- Well, I certainly have learned more about steam cars since reading these articles :) In this article, the level of detail will depend on how many models of steam car are presented. I'm glad to see the Doble has its own article Pendragon39 21:13, 28 August 2007 (UTC)
[edit] New steam technology
Perhaps new steam technology (steam production via the blending of methanol and hydrogen peroxide, instead of simple heating) might again propell steam cars. The technology has been produced by Tiancun Xiao and picked up by Oxford Catalysts
See also:
— Preceding unsigned comment added by 81.245.169.144 (talk • contribs) 16:53, 04 September 2007
- The above comment may well have been a bit of 'self-promotion' on the part of Oxford Catalysts, but for those interested in the subject it is certainly worth a look. The reaction they have discovered is little short of 'magic'!
- Also available from their site is a Press Release (?) apparently written by a freelance science writer. This gives a better idea about the practical applications of this technology. However, I can't help feeling that a spray applicator for domestic cleaning, that operates at room temperature, and produces a jet of steam at 800degC might be a tad dangerous!! (Their website demo video shows steam igniting a piece of paper!!)
- The technology is too new to add anything on this page, but if suitable refs can be found, would be a good addition to the steam page...
- EdJogg 17:14, 4 September 2007 (UTC)
-
- Agree. I suggest we continue this discussion on the talk:Steam page (where I have already copied it). Once I know we're all there, I'll delete this section from here.--John of Paris 09:27, 5 September 2007 (UTC)
[edit] Oh, pioneers
I've heard of a 1788 Fourness steam car. Anybody know more? Add it? Trekphiler (talk) 04:21, 25 November 2007 (UTC)
[edit] Further research
http://www.stanleysteameronline.com/ is a potentially useful source of information for further research, and includes photos of steam cars and related advertising literature and ephemera, plus a large amount of detail on individual manufacturers. Unfortunately, despite the obvious knowledge of the site owner, it is effectively a 'fan' site and doesn't really meet WP's criteria for external links (although many similar sites are already linked!), particularly because pages cannot be addressed individually.
EdJogg (talk) 14:10, 13 February 2008 (UTC)
- Yes, it's a small family site under construction. The best bet is [4]- that's where all the big cheeses in the steam car world hang out, such as Jim Crank and George Nutz (not pseudonyms as far as I know). Lots of serious historical and technical pages. The Forum [5] is very lively and well worth the occasional visit.--John of Paris (talk) 18:09, 13 February 2008 (UTC)
[edit] London Steam carrige
This is mentioned in Francis Trevithick's Life of Richard Trevithick, Vol.I p. 142 and is described as "apocryphal" by Robert Young, Timothy Hackworth and the locomotive (Pub. 1923, reprint 1975 & 2000). What one can ask is how he would have found the time to develop and build it at that hectic time.--John of Paris (talk) 21:25, 28 February 2008 (UTC)

