Standard gravitational parameter

From Wikipedia, the free encyclopedia

Body μ (km3s-2)
Sun 132,712,440,018
Mercury 22,032
Venus 324,859
Earth 398,600 .4418 ±0.0008
Moon 4902 .7779
Mars 42,828
Ceres 63 .1 ±0.3[1][2]
Jupiter 126,686,534
Saturn 37,931,187
Uranus 5,793,939 ± 13[3]
Neptune 6,836,529
Pluto 871 ±5[4]
Eris 1,108 ±13[5]

In astrodynamics, the standard gravitational parameter \mu \ of a celestial body is the product of the gravitational constant G and the mass M:

\mu=GM \

The units of the standard gravitational parameter are km3s-2


Contents

[edit] Small body orbiting a central body

Under standard assumptions in astrodynamics we have:

m << M \

where:

and the relevant standard gravitational parameter is that of the larger body.


For all circular orbits around a given central body:

\mu = rv^2 = r^3\omega^2 = 4\pi^2r^3/T^2 \

where:


The last equality has a very simple generalization to elliptic orbits:

\mu=4\pi^2a^3/T^2 \

where:

See Kepler's third law.


For all parabolic trajectories r v^2 \ is constant and equal to 2 \mu \ ;.

For elliptic and hyperbolic orbits  \mu \ is twice the semi-major axis times the absolute value of the specific orbital energy.

[edit] Two bodies orbiting each other

In the more general case where the bodies need not be a large one and a small one, we define:

  • the vector  \mathbf{r} \ is the position of one body relative to the other
  •  r \ , v \ , and in the case of an elliptic orbit, the semi-major axis  a \ , are defined accordingly (hence  r \ is the distance)
  • \mu={G}(m_1 + m_2) \ (the sum of the two  \mu \ values)

where:

  • m_1 \ and m_2 \ are the masses of the two bodies.

Then:

[edit] Terminology and accuracy

The value for the Earth is called geocentric gravitational constant and equal to 398 600.441 8 ± 0.000 8 km3s-2. Thus the uncertainty is 1 to 500 000 000, much smaller than the uncertainties in G and M separately (1 to 7000 each).

The value for the Sun is called heliocentric gravitational constant and equals 1.32712440018×1020 m3s-2.


[edit] References

  1. ^ Pitjeva, E. V. (2005). "High-Precision Ephemerides of Planets — EPM and Determination of Some Astronomical Constants" (PDF). Solar System Research 39 (3): 176. doi:10.1007/s11208-005-0033-2. 
  2. ^ D. T. Britt et al Asteroid density, porosity, and structure, pp. 488 in Asteroids III, University of Arizona Press (2002).
  3. ^ Jacobson, R.A.; Campbell, J.K.; Taylor, A.H.; Synnott, S.P. (1992). "The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data". The Astronomical Journal 103 (6): 2068–2078. doi:10.1086/116211. 
  4. ^ M. W. Buie, W. M. Grundy, E. F. Young, L. A. Young, S. A. Stern (2006). "Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2". Astronomical Journal 132: 290. doi:10.1086/504422. arXiv:astro-ph/0512491. 
  5. ^ M.E. Brown and E.L. Schaller (2007). "The Mass of Dwarf Planet Eris". Science 316 (5831): 1585. doi:10.1126/science.1139415.