User:Sloverlord/Sandbox

From Wikipedia, the free encyclopedia

\begin{align} 
y & = kx^2 \\
143 & = k(640)^2 \\
    & = 409600k \\
k & = \frac{143}{409600} \\
k \approx .00035 \\
\end{align}


y = .00035x^2 \,


\int_{-640}^{640} \sqrt{1 + \left(f'(x)\right)^2}\, dx \quad f'(x) = .0007x

\int_{-640}^{640} \sqrt{1 + (.00000049x^2)} \, dx

\approx 1321.612

To determine the next problem, we know that the new parabola is also of the form

f(x) = kx^2 \,

for some k. Therefore,

f'(x) = 2kx \,

So the arc length of the new parabola is

1387.69 = \int_{-640}^{640} \sqrt{1 + (2kx)^2} \, dx

k = .0005752 \,

y = (.0005752)(640)^2 \,

y = 235.6 \,

235.6 - 143 = 92.6 \mathrm{ft.} \,