Singularity function

From Wikipedia, the free encyclopedia

Singularity functions or singularity brackets are a notation used to describe discontinuous functions.

<x-a>^n = \begin{cases}
\delta'(x-a) : & n=-2\\
\delta(x-a) : & n=-1\\
0 : & n\ge0, x<a\\
(x-a)^n : & n\ge0, x\ge a
\end{cases}

δ'(x) is the first derivative of δ(x), also called the unit doublet.
δ(x) is the Dirac delta function, also called the unit impulse.

[edit] Integration

Integrating < xa > n can be done in a convenient way in which the constant of integration is automatically included so the result will be 0 at x=a.

\int<x-a>^n dx = \begin{cases} <x-a>^{n+1}, & n<0 \\ \frac{<x-a>^{n+1}}{n+1}, & n \ge 0   \end{cases}

[edit] Example beam calculation

The deflection of a simply supported beam as shown in the diagram, with constant cross-section and elastic modulus, can be found using Euler-Bernoulli beam theory. Here we are using the sign convention of downwards forces and sagging bending moments being positive.

Load distribution:

w=-3N<x-0>^{-1}\ +\ 6Nm^{-1}<x-2m>^0\ -\ 9N<x-4m>^{-1}\,

Shear force:

S=\int w dx
S=-3N<x-0>^0\ +\ 6Nm^{-1}<x-2m>^1\ -\ 9N<x-4m>^0\,

Bending moment:

M = -\int S dx
M=3N<x-0>^1\ -\ 3Nm^{-1}<x-2m>^2\ +\ 9N<x-4m>^1\,

Slope:

u'=\frac{1}{EI}\int M dx
Because the slope is not zero at x=0, a constant of integration, c, is added
u'=\frac{1}{EI}(\frac{3}{2}N<x-0>^2\ -\ 1Nm^{-1}<x-2m>^3\ +\ \frac{9}{2}N<x-4m>^2\ +\ c)\,

Deflection:

u=\int u' dx
u=\frac{1}{EI}(\frac{1}{2}N<x-0>^3\ -\ \frac{1}{4}Nm^{-1}<x-2m>^4\ +\ \frac{3}{2}N<x-4m>^3\ +\ cx)\,

The boundary condition u=0 at x=4m allows us to solve for c=-7Nm2

[edit] See also