User:Silly rabbit/Sandbox

From Wikipedia, the free encyclopedia

< User:Silly rabbit

Siℓℓyℛaввιτ ❤


User:Silly rabbit/Sandbox/Spinors
User:Silly rabbit/Sandbox/connection
User:Silly rabbit/Sandbox/Cartan connection
User:Silly rabbit/Sandbox/Affine connection
User:Silly rabbit/Sandbox/Cartan affine connection
User:Silly rabbit/Sandbox/List of missing differential geometry topics
User:Silly rabbit/Sandbox/Differentiable manifold
User:Silly rabbit/Sandbox/Moving frame
User:Silly rabbit/Sandbox/Hypernumber_History
User:Silly rabbit/Sandbox/Atiyah-Singer index theorem#Heat equation
User:Silly rabbit/Sandbox/Torsion tensor
User:Silly rabbit/Sandbox/Connection form
User:Silly rabbit/Sandbox/Parallel transport
User:Silly rabbit/Sandbox/Exterior algebra
User:Silly rabbit/Sandbox/Hyperbolic space
User:Silly rabbit/Sandbox/Template:Scroll box
User:Silly rabbit/Sandbox/Template:Printable
User:Silly rabbit/Sandbox/Printfooter problem

foo

Proof of (1)
Parallel transport on the sphere.
Parallel transport on the sphere.
\begin{matrix} V & \to & C(q) \\ \downarrow & \swarrow & \\ A && \end{matrix}
{{a \times n = } \atop {\ }} {{\underbrace{a + \cdots + a}} \atop n}
Doesn't work, &Ropf;n &Ropf;ℝn ℝℜℛ
Proof of (1)
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) \,  = a_i \sigma_i b_j \sigma_j \,
 = a_i b_j \sigma_i \sigma_j \,
 = a_i b_j \left( \delta_{ij} + i \varepsilon_{ijk} \sigma_k \right) \,
 = a_i b_j \delta_{ij} + i \sigma_k \varepsilon_{ijk} a_i b_j \,
 = \vec{a} \cdot \vec{b} + i \vec{\sigma} \cdot ( \vec{a} \times \vec{b} )\,
Proof of (2)

First notice that for even powers

(\hat{n} \cdot \vec{\sigma})^{2n} = I \,

but for odd powers

(\hat{n} \cdot \vec{\sigma})^{2n+1} = \hat{n} \cdot \vec{\sigma} \,

Combine these two facts with the knowledge of the relation of the exponential to sine and cosine:

e^{ix} \, = \sum_{n=0}^\infty{\frac{i^n x^n}{n!}} \,
= \sum_{n=0}^\infty{\frac{(-1)^n x^{2n}}{2n!}} + i\sum_{n=0}^\infty{\frac{(-1)^n x^{2n+1}}{(2n+1)!}} \,

Which, when we use x = a (\hat{n} \cdot \sigma) \, gives us

= \sum_{n=0}^\infty{\frac{(-1)^n (a\hat{n}\cdot \sigma)^{2n}}{2n!}} + i\sum_{n=0}^\infty{\frac{(-1)^n (a\hat{n}\cdot \sigma)^{2n+1}}{(2n+1)!}} \,
= \sum_{n=0}^\infty{\frac{(-1)^n a^{2n}}{2n!}} + i (\hat{n}\cdot \sigma) \sum_{n=0}^\infty{\frac{(-1)^n a^{2n+1}}{(2n+1)!}} \,

The sum on the left is cosine, and the sum on the right is sine so finally,

e^{i a(\hat{n} \cdot \vec{\sigma})} = \cos{a} + i (\hat{n} \cdot \vec{\sigma}) \sin{a} \,


. . . . .
. . . , .
. . . . @
. . . . .
. . . . .

A ration of food. (Silly rabbit 15:17, 20 June 2007 (UTC))

Views
  • User page
  • Discussion
  • Current revision
Navigation
  • Main Page
  • Contents
  • Featured content
  • Current events
Interaction
  • About Wikipedia
  • Community portal
  • Recent changes
  • Contact Wikipedia
  • Donate to Wikipedia
  • Help
Powered by MediaWiki
Wikimedia Foundation
  • This page was last modified 20:53, 22 April 2008 by Wikipedia user Silly rabbit.
  • All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
    Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.
  • About Wikipedia
  • Disclaimers