Representation of a Lie superalgebra
From Wikipedia, the free encyclopedia
In mathematics, particularly in the theory of Lie superalgebras, a representation of a Lie superalgebra L is the action of L on a Z2-graded vector space V, such that if A and B are any two pure elements of L and X and Y are any two pure elements of V, then
Equivalently, a representation of L is a Z2-graded representation of the universal enveloping algebra of L which respects the third equation above.
![(c_1 A+c_2 B)[X]=c_1 A[X] + c_2 B[X]\,](../../../../math/f/3/f/f3f208c45b651ef6deb87c7bd92a146c.png)
![A[c_1 X + c_2 Y]=c_1 A[X] + c_2 A[Y]\,](../../../../math/1/7/0/170cdc60b702058214ce87f595848200.png)
![(-1)^{A[X]}=(-1)^A(-1)^X\,](../../../../math/9/9/7/9978a6fa41ac43800998bb6323f60400.png)
![[A,B)[X]=A[B[X]]-(-1)^{AB}B[A[X]].\,](../../../../math/0/a/5/0a5e4af050ba30ee75fa11b7e93452b3.png)

