Rectified 120-cell

From Wikipedia, the free encyclopedia

Rectified 120-cell

Stereographic projection
Type Uniform polychoron
Cells 720 total:
120 (3.5.3.5)
600 (3.3.3)
Faces 3120 total:
2400 {3}, 720 {5}
Edges 3600
Vertices 1200
Vertex figure Right equilateral-triangular prism
Schläfli symbol t1{5,3,3}
Symmetry group H4 or [3,3,5]
Properties convex

In geometry, the rectified 120-cell is a convex uniform polychoron composed of 600 regular tetrahedra and 120 icosidodecahedra cells.

Alternative names:

  • Rectified 120-cell (Norman Johnson)
  • Rectified hecatonicosichoron
  • Rectified polydodecahedron
  • Icosidodecahedral hexacosihecatonicosachoron
  • Rahi (Jonathan Bowers: for rectified hecatonicosachoron)
  • Ambohecatonicosachoron (Neil Sloane & John Horton Conway)

[edit] See also

[edit] References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • M. Möller: Definitions and computations to the Platonic and Archimedean polyhedrons, thesis (diploma), University of Hamburg, 2001

[edit] External links

This polyhedron-related article is a stub. You can help Wikipedia by expanding it.
Languages