Rectified 120-cell
From Wikipedia, the free encyclopedia
| Rectified 120-cell | |
|---|---|
Stereographic projection |
|
| Type | Uniform polychoron |
| Cells | 720 total: 120 (3.5.3.5) 600 (3.3.3) |
| Faces | 3120 total: 2400 {3}, 720 {5} |
| Edges | 3600 |
| Vertices | 1200 |
| Vertex figure | Right equilateral-triangular prism |
| Schläfli symbol | t1{5,3,3} |
| Symmetry group | H4 or [3,3,5] |
| Properties | convex |
In geometry, the rectified 120-cell is a convex uniform polychoron composed of 600 regular tetrahedra and 120 icosidodecahedra cells.
Alternative names:
- Rectified 120-cell (Norman Johnson)
- Rectified hecatonicosichoron
- Rectified polydodecahedron
- Icosidodecahedral hexacosihecatonicosachoron
- Rahi (Jonathan Bowers: for rectified hecatonicosachoron)
- Ambohecatonicosachoron (Neil Sloane & John Horton Conway)
[edit] See also
[edit] References
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- M. Möller: Definitions and computations to the Platonic and Archimedean polyhedrons, thesis (diploma), University of Hamburg, 2001
[edit] External links
- Icosidodecahedral hexacosihecatonicosachoron (33) from George Olshevsky's Convex uniform polychora
- rectified 120-cell Marco Möller's Archimedean polytopes in R4 (German)Archimedische Polychora

