RAC3 (gene)
From Wikipedia, the free encyclopedia
|
Ras-related C3 botulinum toxin substrate 3 (rho family, small GTP binding protein Rac3)
|
||||||||||||||
| PDB rendering based on 1e96. | ||||||||||||||
| Available structures: 1e96, 1foe, 1g4u, 1he1, 1hh4, 1i4d, 1i4l, 1i4t, 1mh1, 2c2h, 2fju, 2g0n, 2h7v, 2ic5, 2nz8, 2ov2, 2p2l | ||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | RAC3; | |||||||||||||
| External IDs | OMIM: 602050 MGI: 2180784 HomoloGene: 68433 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 5881 | 170758 | ||||||||||||
| Ensembl | ENSG00000169750 | ENSMUSG00000018012 | ||||||||||||
| Uniprot | P60763 | Q14A12 | ||||||||||||
| Refseq | NM_005052 (mRNA) NP_005043 (protein) |
NM_133223 (mRNA) NP_573486 (protein) |
||||||||||||
| Location | Chr 17: 77.58 - 77.59 Mb | Chr 11: 120.54 - 120.54 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
Ras-related C3 botulinum toxin substrate 3 (rho family, small GTP binding protein Rac3), also known as RAC3, is a human gene.[1]
The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases.[1]
[edit] References
[edit] Further reading
- Didsbury J, Weber RF, Bokoch GM, et al. (1989). "rac, a novel ras-related family of proteins that are botulinum toxin substrates.". J. Biol. Chem. 264 (28): 16378–82. PMID 2674130.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery.". Genome Res. 6 (9): 791–806. PMID 8889548.
- Haataja L, Groffen J, Heisterkamp N (1997). "Characterization of RAC3, a novel member of the Rho family.". J. Biol. Chem. 272 (33): 20384–8. PMID 9252344.
- Courjal F, Chuchana P, Theillet C, Fort P (1997). "Structure and chromosomal assignment to 22q12 and 17qter of the ras-related Rac2 and Rac3 human genes.". Genomics 44 (2): 242–6. doi:. PMID 9299243.
- Mira JP, Benard V, Groffen J, et al. (2000). "Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway.". Proc. Natl. Acad. Sci. U.S.A. 97 (1): 185–9. PMID 10618392.
- Soutoglou E, Papafotiou G, Katrakili N, Talianidis I (2000). "Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins.". J. Biol. Chem. 275 (17): 12515–20. PMID 10777539.
- Morris CM, Haataja L, McDonald M, et al. (2000). "The small GTPase RAC3 gene is located within chromosome band 17q25.3 outside and telomeric of a region commonly deleted in breast and ovarian tumours.". Cytogenet. Cell Genet. 89 (1-2): 18–23. PMID 10894930.
- Gnanapragasam VJ, Leung HY, Pulimood AS, et al. (2002). "Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer.". Br. J. Cancer 85 (12): 1928–36. doi:. PMID 11747336.
- Haataja L, Kaartinen V, Groffen J, Heisterkamp N (2002). "The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin alpha(IIb)beta(3)-mediated adhesion and spreading.". J. Biol. Chem. 277 (10): 8321–8. doi:. PMID 11756406.
- De Langhe S, Haataja L, Senadheera D, et al. (2002). "Interaction of the small GTPase Rac3 with NRBP, a protein with a kinase-homology domain.". Int. J. Mol. Med. 9 (5): 451–9. PMID 11956649.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:. PMID 12477932.
- Zhang A, Yeung PL, Li CW, et al. (2004). "Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators.". J. Biol. Chem. 279 (32): 33799–805. doi:. PMID 15184363.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:. PMID 15489334.
- Hwang SL, Chang JH, Cheng TS, et al. (2006). "Expression of Rac3 in human brain tumors.". Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 12 (5): 571–4. doi:. PMID 15993075.
- Chan AY, Coniglio SJ, Chuang YY, et al. (2005). "Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion.". Oncogene 24 (53): 7821–9. doi:. PMID 16027728.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:. PMID 16189514.
- Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF (2006). "Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells.". Breast Cancer Res. 7 (6): R965–74. doi:. PMID 16280046.
- Watabe-Uchida M, John KA, Janas JA, et al. (2006). "The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18.". Neuron 51 (6): 727–39. doi:. PMID 16982419.
- Hajdo-Milasinović A, Ellenbroek SI, van Es S, et al. (2007). "Rac1 and Rac3 have opposing functions in cell adhesion and differentiation of neuronal cells.". J. Cell. Sci. 120 (Pt 4): 555–66. doi:. PMID 17244648.

