User:R36/Sandbox
From Wikipedia, the free encyclopedia
< User:R36
| Differentiation formulas (Assume f(x) and g(x) exist, a and c are constants) |
Integration formulas | |||
1.![]() |
2.![]() |
20.![]() |
21.![]() |
|
3.![]() |
4.![]() |
22.![]() |
23.![]() |
|
5.![]() |
6.![]() |
24.![]() |
25.![]() |
|
7.![]() |
8.![]() |
26. ![]() |
27. ![]() |
|
9.![]() |
10.![]() |
28.![]() |
29.![]() |
|
11.![]() |
12.![]() |
30. ![]() |
31. ![]() |
|
13.![]() |
14.![]() |
32.![]() |
33.![]() |
|
15.![]() |
16.![]() |
34.![]() |
35.![]() |
|
17.![]() |
18.![]() |
36.![]() |
||
19.![]() |
37. Integration by Parts![]() |
|||




![y = \frac{f(x)}{g(x)} \rightarrow \frac{dy}{dx} = \frac{g(x)\cdot f'(x)-f(x)\cdot g'(x)}{[g(x)]^2}](../../../../math/5/f/6/5f667e9d3ab843913298801fe14c29da.png)
![y = [f(x)]^n \rightarrow \frac{dy}{dx} = n\cdot [f(x)]^{n-1}\cdot f'(x)](../../../../math/f/e/d/fed77ba5d9c93bab0a235944d0a54470.png)


![y = \sin f(x) \rightarrow \frac{dy}{dx} = [\cos f(x)]\cdot f'(x)](../../../../math/8/0/7/807aa8c1b85015f56068003ae482c9c2.png)
![y = \cos f(x) \rightarrow \frac{dy}{dx} = [-\sin f(x)]\cdot f'(x)](../../../../math/1/d/e/1de5853285a6629e5d37f93a9a32b863.png)


![y = \tan f(x) \rightarrow \frac{dy}{dx} = [\sec^2 f(x)]\cdot f'(x)](../../../../math/8/4/f/84f321959451a8ba41947898525d7dda.png)
![y = \cot f(x) \rightarrow \frac{dy}{dx} = [-\csc^2 f(x)]\cdot f'(x)](../../../../math/2/5/2/2527aba22d33131f9008d4403a34855f.png)


![y = \sec f(x) \rightarrow \frac{dy}{dx} = [\sec f(x)\cdot \tan f(x)]\cdot f'(x)](../../../../math/1/5/c/15ce5337fcfbd7df497881803aefdaa3.png)
![y = \csc f(x) \rightarrow \frac{dy}{dx} = [-\csc f(x)\cdot \cot f(x)]\cdot f'(x)](../../../../math/e/1/f/e1fe32d895631892fefd39b00ed7f661.png)







![y = \sin^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{\sqrt{1-[f(x)]^2}}](../../../../math/f/b/8/fb8dc416d8d4b545286a3735714f1971.png)


![y = \cos^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{\sqrt{1-[f(x)]^2}}](../../../../math/f/7/c/f7c63ce1b7631c20ab678f2720fb9d67.png)
![y = \tan^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{1+[f(x)]^2}](../../../../math/7/b/1/7b123962875e6b4bbd6d04b3c04bbcf7.png)


![y = \cot^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{1+[f(x)]^2}](../../../../math/5/0/7/507911349f4ae5ecfb8ed5e4e316d105.png)
![y = \sec^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)\cdot \sqrt{[f(x)]^2-1}}](../../../../math/0/6/e/06e35c01dfb6b91da9a0d1578c5b8705.png)

![y = \csc^{-1} f(x) \rightarrow \frac{dy}{dx} = \frac{-f'(x)}{f(x)\cdot \sqrt{[f(x)]^2-1}}](../../../../math/a/2/a/a2aa7d2ef8e863298996a1630f1c3b97.png)


