QARS
From Wikipedia, the free encyclopedia
|
Glutaminyl-tRNA synthetase
|
||||||||||||||
| Identifiers | ||||||||||||||
| Symbol(s) | QARS; GLNRS; PRO2195 | |||||||||||||
| External IDs | OMIM: 603727 MGI: 1915851 HomoloGene: 3704 | |||||||||||||
|
||||||||||||||
| RNA expression pattern | ||||||||||||||
| Orthologs | ||||||||||||||
| Human | Mouse | |||||||||||||
| Entrez | 5859 | 97541 | ||||||||||||
| Ensembl | ENSG00000172053 | ENSMUSG00000032604 | ||||||||||||
| Uniprot | P47897 | n/a | ||||||||||||
| Refseq | NM_005051 (mRNA) NP_005042 (protein) |
NM_133794 (mRNA) NP_598555 (protein) |
||||||||||||
| Location | Chr 3: 49.11 - 49.12 Mb | Chr 9: 108.37 - 108.37 Mb | ||||||||||||
| Pubmed search | [1] | [2] | ||||||||||||
Glutaminyl-tRNA synthetase, also known as QARS, is a human gene.[1]
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.[1]
[edit] References
[edit] Further reading
- Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents.". J. Biol. Chem. 266 (23): 15398–405. PMID 1651330.
- Lamour V, Quevillon S, Diriong S, et al. (1994). "Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.". Proc. Natl. Acad. Sci. U.S.A. 91 (18): 8670–4. PMID 8078941.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Quevillon S, Robinson JC, Berthonneau E, et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.". J. Mol. Biol. 285 (1): 183–95. doi:. PMID 9878398.
- Durkin ME, Jäger AC, Khurana TS, et al. (1999). "Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS).". Cytogenet. Cell Genet. 84 (3-4): 173–8. PMID 10393422.
- Ko YG, Kang YS, Kim EK, et al. (2000). "Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis.". J. Cell Biol. 149 (3): 567–74. PMID 10791971.
- Kim T, Park SG, Kim JE, et al. (2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex.". J. Biol. Chem. 275 (28): 21768–72. doi:. PMID 10801842.
- Kang J, Kim T, Ko YG, et al. (2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases.". J. Biol. Chem. 275 (41): 31682–8. doi:. PMID 10913161.
- Ko YG, Kim EY, Kim T, et al. (2001). "Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1.". J. Biol. Chem. 276 (8): 6030–6. doi:. PMID 11096076.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:. PMID 12477932.
- Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region.". Genomics 83 (1): 153–67. PMID 14667819.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:. PMID 14702039.
- Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway.". Genome Res. 14 (7): 1324–32. doi:. PMID 15231748.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:. PMID 15489334.
- Rush J, Moritz A, Lee KA, et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.". Nat. Biotechnol. 23 (1): 94–101. doi:. PMID 15592455.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:. PMID 16189514.

