QARS

From Wikipedia, the free encyclopedia


Glutaminyl-tRNA synthetase
Identifiers
Symbol(s) QARS; GLNRS; PRO2195
External IDs OMIM: 603727 MGI1915851 HomoloGene3704
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 5859 97541
Ensembl ENSG00000172053 ENSMUSG00000032604
Uniprot P47897 n/a
Refseq NM_005051 (mRNA)
NP_005042 (protein)
NM_133794 (mRNA)
NP_598555 (protein)
Location Chr 3: 49.11 - 49.12 Mb Chr 9: 108.37 - 108.37 Mb
Pubmed search [1] [2]

Glutaminyl-tRNA synthetase, also known as QARS, is a human gene.[1]

Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.[1]

[edit] References

[edit] Further reading

  • Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents.". J. Biol. Chem. 266 (23): 15398–405. PMID 1651330. 
  • Lamour V, Quevillon S, Diriong S, et al. (1994). "Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.". Proc. Natl. Acad. Sci. U.S.A. 91 (18): 8670–4. PMID 8078941. 
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149. 
  • Quevillon S, Robinson JC, Berthonneau E, et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.". J. Mol. Biol. 285 (1): 183–95. doi:10.1006/jmbi.1998.2316. PMID 9878398. 
  • Durkin ME, Jäger AC, Khurana TS, et al. (1999). "Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS).". Cytogenet. Cell Genet. 84 (3-4): 173–8. PMID 10393422. 
  • Ko YG, Kang YS, Kim EK, et al. (2000). "Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis.". J. Cell Biol. 149 (3): 567–74. PMID 10791971. 
  • Kim T, Park SG, Kim JE, et al. (2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex.". J. Biol. Chem. 275 (28): 21768–72. doi:10.1074/jbc.M002404200. PMID 10801842. 
  • Kang J, Kim T, Ko YG, et al. (2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases.". J. Biol. Chem. 275 (41): 31682–8. doi:10.1074/jbc.M909965199. PMID 10913161. 
  • Ko YG, Kim EY, Kim T, et al. (2001). "Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1.". J. Biol. Chem. 276 (8): 6030–6. doi:10.1074/jbc.M006189200. PMID 11096076. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region.". Genomics 83 (1): 153–67. PMID 14667819. 
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. 
  • Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway.". Genome Res. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMID 15231748. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Rush J, Moritz A, Lee KA, et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.". Nat. Biotechnol. 23 (1): 94–101. doi:10.1038/nbt1046. PMID 15592455. 
  • Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.