User:PuzzleMeister/sandbox

From Wikipedia, the free encyclopedia

Help With Formulæ

f(x)=\frac{log_{10}n}{log_{10}(2006n-n^2)}

f(1),f(2),f(3),...,f(2005)

\left \{ \sqrt[3]{27+\overbrace{3+57+99}} \right \}

\sqrt2

Δx = xfx0

x=\bar{v}t

\bar{v}=\frac{\Delta x}{\Delta t}

vf = v0 + at

\bar{v}=\frac{v_0+v_f}{2} \iff \bar{a} constant

x=v_0t+\frac{1}{2}at^2

{v_f}^2={v_0}^2+2ax

\vec{v_x} = \vec{v_0}\cos{\Theta_0}

pfinal \vec{v_y} = \vec{v_0}\sin{\Theta_0}

\Delta x = v_{x0}t=t\left(v_0\cos{\Theta_0}\right)

vy = vy0gt

\Delta y = v_{y0}t-\frac{1}{2}gt^2

\textrm{Time\ to\ top\ of\ parabola}=\frac{v_0\sin{\Theta_0}-v_y}{g}

t=\sqrt{\frac{2\Delta y}{g}}\iff v_0=0

{v_y}^2 = {v_{y0}}^2-2g\Delta y = {v_{y0}}^2-2g\left(v_{y0}t-\frac{1}{2}gt^2\right)

\textrm{Magnitude\ of\ }\vec{v}=\sqrt{{v_x}^2+{v_y}^2}

\Theta\textrm{\ from\ positive\ }x\textrm{-axis}=\arctan{\frac{v_y}{v_x}}

\Sigma F = F_{net} = m\bar{a}=\frac{m\Delta v}{\Delta t} = F_a - F_f

Ft= m\Delta v\textrm{\ (impulse=momentum)}

TFf = ma

ΣFx = 0 = T1xT2x

\Sigma F_y = 0 = \left(T_{1y}+T_{2y}\right)-Newtons

\mu \left(\textrm{coefficient\ of\ friction}\right) = \frac{friction}{normal}

fk = μkn

f_s \leq \mu_sn, f_{s\textrm{\ max}} = \mu_sn

\textrm{Atwood\ Machines:\ }m_1<m_2

T1N1 = m1a

T2 + N2 = m2a

a2 = b2 + c2 − 2bccosα

\frac{a}{\sin{\alpha}}=\frac{b}{\sin{\beta}}=\frac{c}{\sin{\gamma}}

1N\equiv1kg*m/s^2=0.225lb

g = 9.8m / s2 = 32ft / s2

1lb = 4.44N

1kg=2.2lbs\iff g=9.m/s^2

\vec{R}=\sqrt{37.65^2+22.9^2}\approx 44.1

2 + pfinal

\lim_{x\to\infty}f(x)=\mathbb{M}\textrm{\ where\ }\mathbb{M}\equiv\textrm{ madness.}