Pisano period

From Wikipedia, the free encyclopedia

In mathematics, the nth Pisano period, written π(n), is the period with which the sequence of Fibonacci numbers, modulo n repeats. For example, the Fibonacci numbers mod 3 are 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, etc., with the first eight numbers repeating, so π(3) = 8.

The first Pisano periods (sequence A001175 in OEIS) and their cycles (with spaces before the zeros for readibility) are:

n π(n) nr. of 0s cycle
1 1 1 0
2 3 1 011
3 8 2 0112 0221
4 6 1 011231
5 20 4 01123 03314 04432 02241
6 24 2 011235213415 055431453251
7 16 2 01123516 06654261
8 12 2 011235 055271
9 24 2 011235843718 088764156281
10 60 4 011235831459437 077415617853819 099875279651673 033695493257291

Onward the Pisano periods are 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, 16, 30, 48, 24, 100 ...

For n > 2 the period is even, because alternatingly F(n)2 is one more and one less than F(n − 1)F(n + 1) (Cassini's identity).

The period is relatively small, 4k + 2, for n = F (2k) + F (2k + 2), i.e. Lucas number L (2k + 1), with k a positive integer. This is because F(−2k − 1) = F (2k + 1) and F(−2k) = −F (2k), and the latter is congruent to F(2k + 2) modulo n, showing that the period is a divisor of 4k + 2; the period cannot be 2k + 1 or less because the first 2k + 1 Fibonacci numbers from 0 are less than n.

k n π(n) first half of cycle (with selected second halfs)
1 4 6 0, 1, 1, 2 (, 3, 3)
2 11 10 0, 1, 1, 2, 3, 5 (, 8, 2, 10, 1)
3 29 14 0, 1, 1, 2, 3, 5, 8, 13 (, 21, 5, 26, 2, 28, 1)
4 76 18 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 (, 55, 13, 68, 5, 73, 2, 75, 1)
5 199 22 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 (, 144, 34, 178, 13, 191, 5, 196, 2, 198, 1)
6 521 26 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
7 1364 30 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
8 3571 34 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597
9 9349 38 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181

The second half of the cycle, which is of course equal to the part on the left of 0, consists of alternatingly numbers F(2m + 1) and n &minuns; F(2m), with m decreasing.

Furthermore, the period is 4k for n = F(2k), and 8k + 4 for n = F(2k + 1).

The number of occurrences of 0 per cycle is 1, 2, or 4. Let p be the number after the first 0 after the combination 0, 1. Let the distance between the 0s be q.

  • There is one 0 in a cycle, obviously, if p = 1. This is only possible if q is even or n is 1 or 2.
  • Otherwise there are two 0s in a cycle if p2 ≡ 1. This is only possible if q is even.
  • Otherwise there are four 0s in a cycle. This is the case if q is odd and n is not 1 or 2.

For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. Also, it can be proven that

π(n) ≤ 6n,

and that the equality applies infinitely often (whenever n/2 equals a power of 5).

Contents

[edit] Sums

Using

F(0) + F(1) + F(2) + … + F(k) = F(k + 2) − 1

it follows that the sum of π(n) consecutive Fibonacci numbers is a multiple of n.

Moreover, for the values in the table the sum of π(n) consecutive Fibonacci numbers is n times the (π(n)/2 + 1)th element:

\sum_{k=n}^{n+5} F_{k} = 4 F_{n+4}
\sum_{k=n}^{n+9} F_{k} = 11 F_{n+6}
\sum_{k=n}^{n+13} F_{k} = 29 F_{n+8}
\sum_{k=n}^{n+17} F_{k} = 76 F_{n+10}

[edit] Powers of 10

The Pisano periods when n is a power of 10 are 60, 300, 1500, 15000, 150000, ... (sequence A096363 in OEIS). Mathematician Dov Jarden proved that for n greater than 2 the periodicity mod 10n is 15·10n-1.[1]

[edit] Fibonacci integer sequences modulo n

One can consider Fibonacci integer sequences and take them modulo n, or put differently, consider Fibonacci sequences in the domain Z/n. The period is a divisor of π(n). The number of occurrences of 0 per cycle is 0, 1, 2, or 4. If n is not a prime the cycles include those which are multiples of the cycles for the divisors. For example, for n = 10 the extra cycles include those for n = 2 multiplied by 5, and for n = 5 multiplied by 2.

Table of the extra cycles:

n multiples other cycles
1
2 0
3 0
4 0, 022 033213
5 0 1342
6 0, 0224 0442, 033
7 0 02246325 05531452, 03362134 04415643
8 0, 022462, 044, 066426 033617 077653, 134732574372, 145167541563
9 0, 0336 0663 022461786527 077538213472, 044832573145 055167426854
10 0, 02246 06628 08864 04482, 055, 2684 134718976392

[edit] Term

Pisano periods are named after Leonardo Pisano, better known as Fibonacci.

[edit] References

  1. ^ Weisstein, Eric W.. Pisano Period. MathWorld. Wolfram Web Resources. Retrieved on 2008-03-03.

[edit] External links