User:Physis/Gödel-Herbrand-Kleene equational calculus
From Wikipedia, the free encyclopedia
Contents |
[edit] Definition
Defined in the follwing way.[1][2]
The calculus consists of a set (or system) of equations. An equation is of form <term> = <term>, where the left-hand side term may be required to contain a principial letter. Let the set of nonlogical symbols contain the unary f (besides the arithmetical ones 0 and s). This f is just an example of a particular signature, in generally, an arbitrary signature must be considered (which contains the signature of natural numbers at least as an 0 and s).
[edit] Syntax
- <equation> ::= <lhsterm> = <term>
- <lhsterm> ::= 0
- <lhsterm> ::= s <term>
- <lhsterm> ::= f <term>
- <lhsterm> ::= g <term> <term>
- <term> ::= <variable>
- <term> ::= <lhsterm>
[edit] Rules
[edit] Expressing power
Equivalent power with the theory of partial recursive functions.[3][2]
[edit] Notes
[edit] References
- Bezem, Marc; Klop, Jan Willem; Roel de Vrijer (2003). Term Rewriting Systems. Cambridge University Press. ISBN 0521391156.
- Monk, J. Donald (1976). Mathematical Logic, Graduate Texts in Mathematics. New York • Heidelberg • Berlin: Springer-Verlag.

![\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi[x := \mathbf m]}](../../../../math/3/4/c/34c2dfc0751514bce6929e79a31aea23.png)
![\frac{\Gamma \vdash \sigma = \tau, m \in \mathbb N, n \in \mathbb N, \Gamma \vdash f \mathbf m = \mathbf n}{\Gamma \vdash \sigma = \tau[f \mathbf m \to_1 \mathbf n]}](../../../../math/5/0/9/509a508c47f4bf56cc9f457cd97d1c77.png)

