User:Philogo/Sandbox

From Wikipedia, the free encyclopedia

User talk:Philogo LOOK
[1] [2] WikiProject Logic
WikiProject Logic [citation needed] [citation needed]

 A = \{\forall x \exists y : x = y\} and  B = \{\exists x : x = x\} .
 \forall x \exists y
 \forall x
  \exists y
\forall x | \existsx |\existsx

&imp; ¬

¬x ∧ y

| f2 || f0010 || 0 0 1 0 || (x) y || y and not x || ¬x ∧ y |-

START






END



~Át̪


start

| rowspan=3 bgcolor=#d0f0d0 align=center|





||material implication
END



ââ

a b c 1 2 3

Hello there

Block quote

blah blah block quote | rowspan=3 bgcolor=#d0f0d0 align=center|





||material implication | rowspan=3|AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒ (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

⊃ may mean the same as ⇒ (the symbol may also mean superset). ⊃⊃⊃⊃

P Q OR IMP AND NAND NIMP NOR T T T T T T T T T T F F F F F F F F T F T T T T F F F F T T T T F F F F F T T T F F T T F F T T F F T T F F F F T F T F T F T F T F T F T F T F









P Q OR IMP AND NAND NIMP NOR T T T T T T T T T T F F F F F F F F T F T T T T F F F F T T T T F F F F F T T T F F T T F F T T F F T T F F F F T F T F T F T F T F T F T F T F










!P !Q ! OR IMP AND NAND NIMP NOR |T |T |T |T |T |T |T |T |T |T |F |F F F F F F F T F T T T T F F F F T T T T F F F F F T T T F F T T F F T T F F T T F F F F T F T F T F T F T F T F T F T F

header 1 header 2 header 3
row 1, cell 1 row 1, cell 2 row 1, cell 3
row 2, cell 1 row 2, cell 2 row 2, cell 3

== Deductive reasoning, according to many dictionaries,[3] is the type of reasoning that proceeds from general principles or premises to derive particular information.