Talk:Pentachoron
From Wikipedia, the free encyclopedia
If I'm not mistaken, this is the only figure in either three or four dimensional space in which you can have five equidistant points around a central vertex. This should be noted If it is correct.
- This property is true of all in the simplex family - (n+1)-points being equidistant in n-space. Tom Ruen 00:26, 16 November 2006 (UTC)
The symmetry group is listed as A4. I don't think this can be true and should be A5 instead. In general, I believe that the symmetry group of the n-dimenstional simplex is An+1.HannsEwald 01:51, 13 November 2007 (UTC)
- A4 actually refers to the Coxeter group A4 not the alternating group. The Coxeter group A4 is isomorphic to the symmetric group S5 and the subgroup of proper rotations is indeed isomorphic to the alternating group A5 as you say. Yes, the notation is unfortunate. -- Fropuff 04:42, 13 November 2007 (UTC)
-
- Thanks for the quick explanation. I suppose then we've got to deal with some inconsistencies: in Tetrahedron the symmetry group is named as Td, while in the Tetrahedral symmetry it is referred to as A4, which in this context must refer to the alternating group.
-
- While I have to admit unfamiliarity with Coexter groups, it seems to me that we would not lose anything if we stayed with the symmetric group when discussing symmetry groups of the n-simplex, especially if my generalization above is correct.HannsEwald 11:36, 13 November 2007 (UTC)
-
-
- The advantage of using Coxeter groups is that the symmetry group of every regular polytope is a finite Coxeter group. While the symmetric and alternating groups are sufficient to discuss the rotational symmetries of the 3-dimensional regular polytopes the same is not true in higher dimensions, particularly 4. Also, the Coxeter groups have a direct geometric interpretation since the finite ones are usually defined as groups generated by reflections in Euclidean space.
-
-
-
- The symmetry group of the n-simplex is the Coxeter group An for all n. This group is isomorphic to Sn+1 as you say, but I find it more helpful to think of the group as a Coxeter group rather than a symmetric group. -- Fropuff 16:43, 13 November 2007 (UTC)
-

