User:PAR/Work1
From Wikipedia, the free encyclopedia
< User:PAR
Elastostatic Equation
Constitutive equation, isotropic material (λ = 2μν / (1 − 2ν))
[edit] Some particular solutions
[edit] Point force at the origin of an isotropic space (Thomson 1848)
(See Landau & Lifshitz § 8) Boundary Conditions: displacement is zero at infinity
cylindrical coordinates (ρ,φ,z)
spherical coordinates (r,θ,φ)
z-force only (f=[0,0,1])
Stress for f=[0,0,1]
z-stress on z=0 plane
[edit] Point force at the origin of an infinite isotropic half-space (Boussinesq 1885)
Boundary Conditions: displacement is zero at infinity, and force is zero for z=0 (except at origin)
Cartesian coordinates:
at z=0:
Cylindrical Coordinates (ρ,φ,z)
Spherical Coordinates (r,θ,φ)
z-force only
z-stress on z=0 plane is ZERO.
[edit] Nucleus of expansion at origin in infinite space
displacement (K is a constant)
Stress
z-Stress on xy plane
[edit] Nucleus of expansion dipole in infinite space
dipole along z axis. Displacement
[edit] Nucleus of expansion at infinity in infinite space
displacement (K is a constant)
Stress
z-Stress on an xy plane, including z=0 plane
[edit] Semi-infinite line of dilatation in infinite space
Along negative z axis. Displacement
Stress
z-Stress on xy plane
[edit] Point force inside an infinite isotropic half-space (Mindlin 1936)
[edit] References
- Landau, L.D.; Lifshitz, E. M. (1986). Theory of Elasticity, 3rd Edition, Oxford, England: Butterworth Heinemann. ISBN 0-7506-2633-X.
- Boussinesq, Joseph (1885). Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques. Paris, France: Gauthier-Villars.
- Mindlin, R. D. (1936). "Force at a point in the interior of a semi-infinite solid". Physics 7: 195-202.




![G_{ik}=
\frac{1}{4\pi\mu r}\left[
\left(1-\frac{1}{2b}\right)\delta_{ik}+\frac{1}{2b}\frac{x_i x_k}{r^3}
\right]](../../../../math/2/5/e/25e615cd64ef44b739bb74f6e46890c8.png)
![G_{ik}=
\frac{1}{4\pi\mu}\left[\frac{\delta_{ik}}{r}-\frac{1}{2b}\frac{\partial r^2}{\partial x_i\partial x_k}\right]](../../../../math/0/8/e/08eb8b175cad8fabfb54aa45f353ebb3.png)



![\mathbf{u}=\frac{1}{4\pi \mu r}
\left[\frac{1}{2b}\,\frac{z\mathbf{r}}{r^2}+\left(1-\frac{1}{2b}\right)\hat{\mathbf{z}}\right]](../../../../math/0/0/5/005271436c4e93c018af492b2a62b4e0.png)







![\mathbf{u}=\frac{1}{4\pi \mu}
\left[\frac{z\mathbf{r}}{r^3}-\frac{a\mathbf{r}}{r(r+z)}+\left(\frac{b}{r}+\frac{az}{r(r+z)}\right)\hat{\mathbf{z}}\right]](../../../../math/a/1/b/a1b9056be795ad45a53ab0982e67765b.png)











