User:PAR/Work1

From Wikipedia, the free encyclopedia

Elastostatic Equation


\mu\nabla^2\mathbf{u}+\frac{\mu}{1-2\nu}\nabla(\nabla\cdot\mathbf{u})=\mathbf{f}
\,\,\,\,\,\,\,\,\mathrm{or}\,\,\,\,\,\,\,\,
\mu\partial_j\partial_ju_i+\frac{\mu}{1-2\nu}\partial_i\partial_ju_j=f_i

Constitutive equation, isotropic material (λ = 2μν / (1 − 2ν))


\sigma_{ij}=\lambda(\partial_k u_k)\delta_{ij}+\mu(\partial_i u_j+\partial_j u_i)\,

Contents

[edit] Some particular solutions

[edit] Point force at the origin of an isotropic space (Thomson 1848)

(See Landau & Lifshitz § 8) Boundary Conditions: displacement is zero at infinity

a=1-2\nu\,
b=2(1-\nu)=a+1\,
G_{ik}=
\frac{1}{4\pi\mu r}\left[
\left(1-\frac{1}{2b}\right)\delta_{ik}+\frac{1}{2b}\frac{x_i x_k}{r^3}
\right]
G_{ik}=
\frac{1}{4\pi\mu}\left[\frac{\delta_{ik}}{r}-\frac{1}{2b}\frac{\partial r^2}{\partial x_i\partial x_k}\right]
G_{ik}=\frac{1}{4\pi\mu r}\begin{bmatrix}

1-\frac{1}{2b}+\frac{1}{2b}\frac{x^2}{r^2} &
  \frac{1}{2b}\frac{xy} {r^2} &
  \frac{1}{2b}\frac{xz} {r^2} \\

  \frac{1}{2b}\frac{yx} {r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{y^2}{r^2} &
  \frac{1}{2b}\frac{yz} {r^2} \\

  \frac{1}{2b}\frac{zx} {r^2} &
  \frac{1}{2b}\frac{zy} {r^2} &
1-\frac{1}{2b}+\frac{1}{2b}\frac{z^2}{r^2} 
\end{bmatrix}

cylindrical coordinates (ρ,φ,z)

G_{ik}=\frac{1}{4\pi \mu r}\begin{bmatrix}
1-\frac{1}{2b}\frac{z^2}{r^2}&0&\frac{1}{2b}\frac{\rho z}{r^2}\\
0&1-\frac{1}{2b}&0\\
\frac{1}{2b}\frac{z \rho}{r^2}&0&1-\frac{1}{2b}\frac{\rho^2}{r^2}
\end{bmatrix}

spherical coordinates (r,θ,φ)

G_{ik}=\frac{1}{4\pi \mu r}\begin{bmatrix}
1&0&0\\
0&1-\frac{1}{2b}&0\\
0&0&1-\frac{1}{2b}
\end{bmatrix}

z-force only (f=[0,0,1])

\mathbf{u}=\frac{1}{4\pi \mu r}
\left[\frac{1}{2b}\,\frac{z\mathbf{r}}{r^2}+\left(1-\frac{1}{2b}\right)\hat{\mathbf{z}}\right]

Stress for f=[0,0,1]

\sigma_{ik}=\begin{bmatrix}
z(-ar^2+3x^2)&3xyz       &x(ar^2+3z^2)\\
3xyz         &(-ar^2+3y^2)&y(ar^2+3z^2)\\
x(ar^2+3z^2) &y(ar^2+3z^2)&z(ar^2+3z^2)
\end{bmatrix}

z-stress on z=0 plane


\sigma_z=\frac{-a}{2\pi b}\,\frac{\mathbf{r}}{r^3}

[edit] Point force at the origin of an infinite isotropic half-space (Boussinesq 1885)

(See Landau & Lifshitz § 8)

Boundary Conditions: displacement is zero at infinity, and force is zero for z=0 (except at origin)

a=1-2\nu\,
b=2(1-\nu)\,

Cartesian coordinates:

G_{ik}=\frac{1}{4\pi\mu}\begin{bmatrix}

\frac{b}{r}+\frac{x^2}{r^3}-\frac{ax^2}{r(r+z)^2}+\frac{az}{r(r+z)} &
\frac{xy}{r^3}-\frac{axy}{r(r+z)^2}&
\frac{xz}{r^3}-\frac{ax}{r(r+z)}\\

\frac{yx}{r^3} -\frac{ayx}{r(r+z)^2}&
\frac{b}{r}+\frac{y^2}{r^3}-\frac{ay^2}{r(r+z)^2}+\frac{az}{r(r+z)} &
\frac{yz}{r^3} -\frac{ay}{r(r+z)}\\

\frac{zx}{r^3}+\frac{ax}{r(r+z)}&
\frac{zy}{r^3}+\frac{ay}{r(r+z)}&
\frac{b}{r}+\frac{z^2}{r^3}
\end{bmatrix}

at z=0:

G_{ik}=\frac{1}{4\pi\mu}\begin{bmatrix}

\frac{b}{r}+\frac{2\nu x^2}{r^3}&
\frac{2\nu xy}{r^3}&
-\frac{ax}{r^2}\\

\frac{2\nu yx}{r^3}&
\frac{b}{r}+\frac{2\nu y^2}{r^3}&
-\frac{ay}{r^2}\\

\frac{ax}{r^2}&
\frac{ay}{r^2}&
\frac{b}{r}

\end{bmatrix}

Cylindrical Coordinates (ρ,φ,z)

G_{ik}=\frac{1}{4\pi\mu}\begin{bmatrix}

\frac{b}{r}-\frac{a}{r+z}???+\frac{\rho^2}{r^3} &
0&
-\frac{a\rho}{r(r+z)}+\frac{\rho z}{r^3}\\

0&
\frac{b}{r}-\frac{az}{r(r+z)}&
0\\

\frac{a\rho}{r(r+z)}+\frac{z \rho}{r^3}&
0&
\frac{b}{r}+\frac{z^2}{r^3}

\end{bmatrix}

Spherical Coordinates (r,θ,φ)

G_{ik}=\frac{1}{4\pi\mu}\begin{bmatrix}

\frac{2}{r}+\frac{az}{r^2}&
\frac{a\rho^3}{r^2(r+z)^2}&
0\\

\frac{-a\rho}{r^2}&
\frac{b}{r}-\frac{az^2}{r^2(r+z)}&
0\\

0&
0&
\frac{b}{r}-\frac{az}{r(r+z)}

\end{bmatrix}

z-force only

\mathbf{u}=\frac{1}{4\pi \mu}
\left[\frac{z\mathbf{r}}{r^3}-\frac{a\mathbf{r}}{r(r+z)}+\left(\frac{b}{r}+\frac{az}{r(r+z)}\right)\hat{\mathbf{z}}\right]

z-stress on z=0 plane is ZERO.

[edit] Nucleus of expansion at origin in infinite space

displacement (K is a constant)

\mathbf{u}= K \frac{\mathbf{r}}{r^3}

Stress

\sigma_{ij}=K\mu\left(\frac{4\delta_{ij}}{r^3}-\frac{12x_ix_j}{r^5}\right)

z-Stress on xy plane

\sigma_{zj}=K\mu\left(\frac{4\hat{\mathbf{z}}}{r^3}-\frac{12z\mathbf{r}}{r^5}\right)

[edit] Nucleus of expansion dipole in infinite space

dipole along z axis. Displacement

\mathbf{u}=K\frac{z\mathbf{r}}{r^5}

[edit] Nucleus of expansion at infinity in infinite space

displacement (K is a constant)

\mathbf{u}= K \mathbf{r}

Stress

\sigma_{ij}=\frac{2K\mu b}{a}\,\delta_{ij}

z-Stress on an xy plane, including z=0 plane

\sigma_{zj}=\frac{2K\mu b}{a}\hat{\mathbf{z}}

[edit] Semi-infinite line of dilatation in infinite space

Along negative z axis. Displacement

\mathbf{u}=
K\nabla\ln(r+z)=
\frac{K}{r(r+z)}
(\mathbf{r}+r\hat{\mathbf{z}})

Stress

\sigma_{ik}=\frac{4K\mu}{r^2}\begin{bmatrix}

\frac{r}{r+z}-\frac{x^2(2r+z)}{r(r+z)^2}&
             -\frac{xy (2r+z)}{r(r+z)^2}&
-\frac{x}{r}\\

             -\frac{xy (2r+z)}{r(r+z)^2}&
\frac{r}{r+z}-\frac{x^2(2r+z)}{r(r+z)^2}&
-\frac{y}{r}\\

-\frac{x}{r}&
-\frac{y}{r}&
-\frac{z}{r}&

\end{bmatrix}

z-Stress on xy plane

\sigma_{zj}=-4K\mu\frac{\mathbf{r}}{r^3}

[edit] Point force inside an infinite isotropic half-space (Mindlin 1936)

[edit] References

  •  Mindlin, R. D. (1936). "Force at a point in the interior of a semi-infinite solid". Physics 7: 195-202.