Octeractic octacomb

From Wikipedia, the free encyclopedia

Octeractic octacomb
(no image)
Type Regular octacomb
Family Hypercube honeycomb
Schläfli symbol {4,36,4}
{4,35,31,1}
{∞}8
Coxeter-Dynkin diagrams Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.png
Image:CD_ring.pngImage:CD_4.pngImage:CD_dot.pngImage:CD_3b.pngImage:CD_dot.pngImage:CD_3b.pngImage:CD_dot.pngImage:CD_3b.pngImage:CD_dot.pngImage:CD_3b.pngImage:CD_dot.pngImage:CD_3b.pngImage:CD_downbranch-00.pngImage:CD_3b.pngImage:CD_dot.png
Image:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.pngImage:CDW_2.png...Image:CDW_2.pngImage:CDW_ring.pngImage:CDW_infin.pngImage:CDW_dot.png
8-face type {4,36}
7-face type {4,35}
6-face type {4,34}
5-face type {4,33}
4-face type {4,32}
Cell type {4,3}
Face type {4}
Face figure {4,3}
(octahedron)
Edge figure 8 {4,3,3}
(16-cell)
Vertex figure 256 {4,36}
(octacross)
Coxeter group [4,36,4]
Dual self-dual
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive

The octeractic octacomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 8-space.

It is an analog of the square tiling of the plane, the cubic honeycomb of 3-space.

There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,36,4}. Another form has two alternating hypercube facets (like a checkerboard) with Schläfli symbol {4,35,31,1}. The lowest symmetry Wythoff construction has 256 types of facets around each vertex and a prismatic product Schläfli symbol {∞}8.


[edit] See also

[edit] References

Languages