Image:Normal approximation to binomial.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

A vector version of this image (SVG) is available.
It should be used in place of this raster image when superior.


Image:Normal approximation to binomial.png  Image:Normal approximation to binomial.svg

For more information about vector graphics, read about Commons transition to SVG.
There is also information about MediaWiki's support of SVG images.


Български | Deutsch | English | Español | Français | Galego | עברית | Magyar | Bahasa Indonesia | Italiano | 日本語 | 한국어 | Lietuvių | Polski | Português | Русский | Српски / Srpski | Українська | ‪中文(简体)‬ | ‪中文(繁體)‬ | +/-

New SVG image

Plot of the probability density function of a normal distribution approximating the probability mass function of a binomial distribution

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation license, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

Aragonés | العربية | Asturianu | Български | বাংলা | ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী | Brezhoneg | Bosanski | Català | Cebuano | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Gaeilge | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | ភាសាខ្មែរ | 한국어 | Kurdî / كوردی | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | ‪Norsk (nynorsk)‬ | ‪Norsk (bokmål)‬ | Occitan | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски / Srpski | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | Yorùbá | ‪中文(中国大陆)‬ | ‪中文(台灣)‬ | +/-

Note: "Norm(12, 3)" is a normal distribution with a mean of 12 and a standard deviation of 3. Its variance is 48 × 1/4 × 3/4 = 9.

gnuplot source under GPL:

# normal (Gaussian) distribution
_ln_dnorm(x, m, s) = -0.5 * log(2*pi) - log(s) - 0.5*((x-m)*1.0/s)**2
dnorm(x, mean, sd) = exp(_ln_dnorm(x, mean, sd))
pnorm(x, mean, sd) = norm((x-mean) * 1.0/sd)

# binomial distribution
_ln_binom(x, n, p) =\
 lgamma(n+1) - lgamma(x+1) - lgamma(n-x+1) + x*log(p) + (n-x)*log(1-p)
dbinom(x, size, prob) = (x==int(x))? exp(_ln_binom(floor(x), size,  prob)) : 0
pbinom(x, size, prob) =\
 (x<0)? 0 : (x<size)? ibeta(size-floor(x), floor(x)+1, 1-prob) : 1

set terminal postscript enhanced color solid lw 2 "Times-Roman" 20
set output

set key 22,0.13

n = 48
p = 0.25
xmax = 25

set samples 50*xmax+1

plot [0:xmax] \
    dbinom(x, n, p) with impulses title "Binom(48, 0.25)", \
    dnorm(x, n*p, sqrt(n*p*(1-p))) linetype 3 title "Norm(12, 3)"
GNU head This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See version 2 and version 3 of the GNU General Public License for more details.

العربية | Català | Česky | Deutsch | Ελληνικά | English | Español | فارسی | Français | Italiano | 日本語 | Nederlands | Polski | Português | Русский | Slovenčina | Svenska | Türkçe | ‪中文(简体)‬ | ‪中文(繁體)‬ | +/-

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current11:46, 21 March 20051,300×975 (92 KB)MarkSweep (Plot of the probability density function of a normal distribution approximating the probabiliyt mass function of a binomial distribution {{GFDL}})
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):