NAPA (gene)

From Wikipedia, the free encyclopedia


N-ethylmaleimide-sensitive factor attachment protein, alpha
Identifiers
Symbol(s) NAPA; SNAPA
External IDs OMIM: 603215 MGI104563 HomoloGene2839
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 8775 108124
Ensembl ENSG00000105402 ENSMUSG00000006024
Uniprot P54920 Q9CXX1
Refseq NM_003827 (mRNA)
NP_003818 (protein)
NM_025898 (mRNA)
NP_080174 (protein)
Location Chr 19: 52.68 - 52.71 Mb Chr 7: 15.26 - 15.28 Mb
Pubmed search [1] [2]

N-ethylmaleimide-sensitive factor attachment protein, alpha, also known as NAPA, is a human gene.[1]

The 'SNARE hypothesis' is a model explaining the process of docking and fusion of vesicles to their target membranes. According to this model, membrane proteins from the vesicle (v-SNAREs) and proteins from the target membrane (t-SNAREs) govern the specificity of vesicle targeting and docking through mutual recognition. Once the 2 classes of SNAREs bind to each other, they form a complex that recruits the general elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive factor) and SNAPs (soluble NSF-attachment proteins), to the site of membrane fusion, thereby forming the 20S fusion complex. Alpha- and gamma-SNAP are found in a wide range of tissues and act synergistically in intra-Golgi transport. The sequence of the predicted 295-amino acid human protein encoded by NAPA shares 37%, 60%, and 67% identity with the sequences of yeast, Drosophila, and squid alpha-SNAP, respectively. Platelets contain some of the same proteins, including NSF, p115/TAP, alpha-SNAP, gamma-SNAP, and the t-SNAREs syntaxin-2 and syntaxin-4, that are used in many vesicular transport processes in other cell types. Platelet exocytosis uses a molecular mechanism similar to that used by other secretory cells, such as neurons, although the proteins used by the platelet and their modes of regulation may be quite different.[1]

[edit] References

[edit] Further reading

  • Wilson DW, Whiteheart SW, Wiedmann M, et al. (1992). "A multisubunit particle implicated in membrane fusion.". J. Cell Biol. 117 (3): 531–8. PMID 1315316. 
  • Whiteheart SW, Brunner M, Wilson DW, et al. (1992). "Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes.". J. Biol. Chem. 267 (17): 12239–43. PMID 1601890. 
  • Hanson PI, Otto H, Barton N, Jahn R (1995). "The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin.". J. Biol. Chem. 270 (28): 16955–61. PMID 7622514. 
  • Whiteheart SW, Griff IC, Brunner M, et al. (1993). "SNAP family of NSF attachment proteins includes a brain-specific isoform.". Nature 362 (6418): 353–5. doi:10.1038/362353a0. PMID 8455721. 
  • Timmers KI, Clark AE, Omatsu-Kanbe M, et al. (1997). "Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein.". Biochem. J. 320 ( Pt 2): 429–36. PMID 8973549. 
  • Lemons PP, Chen D, Bernstein AM, et al. (1997). "Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery.". Blood 90 (4): 1490–500. PMID 9269766. 
  • Subramaniam VN, Loh E, Hong W (1997). "N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex.". J. Biol. Chem. 272 (41): 25441–4. PMID 9325254. 
  • Lowe SL, Peter F, Subramaniam VN, et al. (1997). "A SNARE involved in protein transport through the Golgi apparatus.". Nature 389 (6653): 881–4. doi:10.1038/39923. PMID 9349823. 
  • Barnard RJ, Morgan A, Burgoyne RD (1997). "Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis.". J. Cell Biol. 139 (4): 875–83. PMID 9362506. 
  • Wong SH, Xu Y, Zhang T, Hong W (1998). "Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment.". J. Biol. Chem. 273 (1): 375–80. PMID 9417091. 
  • Tang BL, Tan AE, Lim LK, et al. (1998). "Syntaxin 12, a member of the syntaxin family localized to the endosome.". J. Biol. Chem. 273 (12): 6944–50. PMID 9507000. 
  • Wong SH, Zhang T, Xu Y, et al. (1998). "Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome.". Mol. Biol. Cell 9 (6): 1549–63. PMID 9614193. 
  • Osten P, Srivastava S, Inman GJ, et al. (1998). "The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs.". Neuron 21 (1): 99–110. PMID 9697855. 
  • Prekeris R, Klumperman J, Chen YA, Scheller RH (1998). "Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes.". J. Cell Biol. 143 (4): 957–71. PMID 9817754. 
  • Nagamatsu S, Watanabe T, Nakamichi Y, et al. (1999). "alpha-soluble N-ethylmaleimide-sensitive factor attachment protein is expressed in pancreatic beta cells and functions in insulin but not gamma-aminobutyric acid secretion.". J. Biol. Chem. 274 (12): 8053–60. PMID 10075705. 
  • Subramaniam VN, Loh E, Horstmann H, et al. (2000). "Preferential association of syntaxin 8 with the early endosome.". J. Cell. Sci. 113 ( Pt 6): 997–1008. PMID 10683148. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Hirose H, Arasaki K, Dohmae N, et al. (2005). "Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi.". EMBO J. 23 (6): 1267–78. doi:10.1038/sj.emboj.7600135. PMID 15029241. 
  • Singh BB, Lockwich TP, Bandyopadhyay BC, et al. (2004). "VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx.". Mol. Cell 15 (4): 635–46. doi:10.1016/j.molcel.2004.07.010. PMID 15327778. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334.