Nakagami distribution
From Wikipedia, the free encyclopedia
| Probability density function |
|
| Cumulative distribution function |
|
| Parameters | μ > = 0.5 shape (real) ω > 0 spread (real) |
|---|---|
| Support | ![]() |
| Probability density function (pdf) | ![]() |
| Cumulative distribution function (cdf) | ![]() |
| Mean | ![]() |
| Median | ![]() |
| Mode | ![]() |
| Variance | ![]() |
| Skewness | |
| Excess kurtosis | |
| Entropy | |
| Moment-generating function (mgf) | |
| Characteristic function | |
The Nakagami distribution or the Nakagami-m distribution is a probability distribution related to the gamma distribution. It has two parameters: a shape parameter μ and a second parameter controlling spread, ω.
Contents |
[edit] Characterization
Its probability density function (pdf) is[1]
Its cumulative distribution function is[1]
where P is the incomplete gamma function (regularized).
[edit] Parameter estimation
The parameters μ and ω are obtained by [1]
and
[edit] History and applications
The Nakagami distribution is relatively new, being first proposed in 1960.[2] It has been used to model attenuation of wireless signals traversing multiple paths.[3]
[edit] References
- ^ a b Laurenson, Dave (1994). Nakagami Distribution. Indoor Radio Channel Propagation Modelling by Ray Tracing Techniques. Retrieved on 2007-08-04.
- ^ M. Nakagami. "The m-Distribution, a general formula of intensity of rapid fading". In W. G. Hoffman, editor, Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held at the University of California, pp 3-36. Permagon Press, 1960.
- ^ J. D. Parsons, The Mobile Radio Propagation Channel. New York: Wiley, 1992.









![\mu = \frac{\operatorname{E}^2 \left[X^2 \right]}
{\operatorname{Var} \left[X^2 \right]}](../../../../math/9/b/f/9bfd7e7cb095acf6831e1e8827d98d30.png)
![\omega = \operatorname{E} \left[X^2 \right].](../../../../math/3/e/b/3ebbbabd92886d0d2f26df998cc9c262.png)

