N=1 supersymmetry algebra in 1+1 dimensions
From Wikipedia, the free encyclopedia
In 1+1 dimensions the N=1 supersymmetry algebra has the following generators:
- supersymmetric charges:

- supersymmetric central charge:

- time translation generator:

- space translation generator:

- boost generator:

- fermionic parity:

- unit element:

The following relations are satisfied by the generators:
is a central element.
The supersymmetry algebra admits a
-grading. The generators
are even (degree 0), the generators
are odd (degree 1).
Basic representations of this algebra are the vacuum, kink and boson-fermion representations, which are relevant e.g. to the supersymmetric (quantum) sine-Gordon model.
[edit] References
- K. Schoutens, Supersymmetry and factorized scattering, Nucl.Phys. B344, 665-695, 1990
- T.J. Hollowood, E. Mavrikis, The N=1 supersymmetric bootstrap and Lie algebras, Nucl.Phys. B484, 631-652, 1997, arXiv:hep-th/9606116
![\begin{align}
& \{ \Gamma,\Gamma \} =2I && \{ \Gamma, Q \} =0 && \{ \Gamma, \bar{Q} \} =0\\
&\{ Q,\bar{Q} \}=2Z && \{ Q, Q \}=2(H+P) && \{ \bar{Q}, \bar{Q} \} =2(H-P) \\
& [N,Q]=\frac{1}{2} Q && [N,\bar{Q} ]=-\frac{1}{2} \bar{Q} && [N,\Gamma]=0 \\
& [N,H+P]=H+P && [N,H-P]=-(H-P) &&
\end{align}](../../../../math/6/8/a/68ab9795baa1a8f92341c293734292e1.png)

