Metacompact space

From Wikipedia, the free encyclopedia

In mathematics, in the field of general topology, a topological space is said to be metacompact if every open cover has a point finite open refinement. That is, given any open cover of the topological space, there is a refinement which is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.

A space is countably metacompact if every countable open cover has a point finite open refinement.

The following can be said about metacompactness in relation to other properties of topological spaces:

[edit] See also