Metacompact space
From Wikipedia, the free encyclopedia
In mathematics, in the field of general topology, a topological space is said to be metacompact if every open cover has a point finite open refinement. That is, given any open cover of the topological space, there is a refinement which is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.
A space is countably metacompact if every countable open cover has a point finite open refinement.
The following can be said about metacompactness in relation to other properties of topological spaces:
- Every paracompact space is metacompact.
- Every metacompact space is orthocompact.
- Every metacompact normal space is a shrinking space
- The product of a compact space and a metacompact space is metacompact. This follows from the tube lemma.

