User:MathsIsFun

From Wikipedia, the free encyclopedia

en This user is a native speaker of English.
de-1 Dieser Benutzer hat grundlegende Deutschkenntnisse.
es-1 Este usuario puede contribuir con un nivel básico de español.
da-1 Denne bruger har et grundlæggende kendskab til dansk.
Other
prog-4 This user is an expert programmer.
This user's favourite colour is blue.

Contents

[edit] My Goal

My goal is to make mathematics more accessible and fun for everyone, and a big part of that is to explain mathematics using "easy language", but this requires a balancing act between precision and comprehension.

Let me explain: there is an educational concept called the spiral, which roughly means that a subject comes around again and again, always at a higher level. For example, a young person is taught that multiplication is just repeated addition. But then a year later the subject is revisited and multiplying by negatives is taught, then decimals come along ...

This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at [Multiplying by Negatives] for a longer description.
This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at [Multiplying by Negatives] for a longer description.

[edit] The Website

And that is why I have developed (Math is Fun, or "Maths is Fun" in British English), to be a place where mathematics can be explained in a more "user-friendly" manner.

And like all people who embark on explaining Science to the general public I must at times leave out details which would only confuse, but it can be very hard to know where to draw the line.

So please forgive me, fellow Wikipedians, when I over-simplify! And correct me gently, but do correct me!

[edit] Contact Details

Use this Contact Form or leave a message on the Math is Fun Forum

[edit] My Test Area Other

\frac{2x^2-5x-1}{x-3} = 2x + 1 + \frac{2}{x-3}

\frac{1}{\sqrt{2}}

\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

\sqrt[n]{a^m} = (\sqrt[n]{a})^m

\sqrt[3]{27^2} = (\sqrt[3]{27})^2 = 3^2 = 9

\sqrt[3]{4^6} = (4)^\frac{6}{3} = 4^2 = 16

\sqrt[n]{a^m} = a^\frac{m}{n}

\sqrt[n]{a} = a^\frac{1}{n}


\sqrt[3]{2^3} = 2

\sqrt[3]{-2^3} = -2

\sqrt[4]{-2^4} = |-2| = 2


5^4=625 \ \ so \ \ 5 = \sqrt[4]{625}


\sqrt[n]{ab} = \sqrt[n]{a}\cdot\sqrt[n]{b}

\sqrt[3]{128} = \sqrt[3]{64\cdot2} = \sqrt[3]{64}\cdot\sqrt[3]{2} = 4\sqrt[3]{2}


\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}

\sqrt[3]{\frac{1}{64}} = \frac{\sqrt[3]{1}}{\sqrt[3]{64}} = \frac{1}{4}


\sqrt[n]{a+b} \neq \sqrt[n]{a}+\sqrt[n]{b}

\sqrt[n]{a-b} \neq \sqrt[n]{a}-\sqrt[n]{b}

\sqrt[n]{a^n+b^n} \neq a+b


\sqrt[n]{a^n} = a

\sqrt{a} \times \sqrt{a} = a

\sqrt[3]{a} \times \sqrt[3]{a} \times \sqrt[3]{a} = a

\underbrace{\sqrt[n]{a} \times \sqrt[n]{a} \times ... \times \sqrt[n]{a}}_{n\ of\ them} = a

[edit] My Test Area Geometry

h = \frac{(r-s)^2}{(r+s)^2}

p = \pi (a+b) \left( 1 + \sum_{n=1}^\infty  {0.5 \choose n}^2 \cdot h^n \right)\!\,

p = \pi (a+b) \sum_{n=0}^\infty  {0.5 \choose n}^2 h^n \!\,

p = \pi (a+b) \left( 1 + \frac{1}{4}h + \frac{1}{64}h^2 + \frac{1}{256}h^3 + ...\right)\!\,



Ellipse perimeter, simple formula:

p \approx 2 \pi \sqrt{\frac{r^2 + s^2}{2}}\!\,

A better approximation by Ramanujan is:

p \approx \pi \left[3(r+s) - \sqrt{(3r+s)(r+3s)}\right]\!\,

\varepsilon= \frac{\sqrt{r^2-s^2}}{r}

p = 2 r \pi \left( 1 - \sum_{i=1}^\infty  \frac{(2i)!^2}{(2^i \cdot i!)^4 } \cdot \frac{\varepsilon^{2i}}{2i-1} \right)

p = 2 r \pi \left[1 - \left(\frac{1}{2}\right)^2 \varepsilon^2 - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{\varepsilon^4}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{\varepsilon^{6}}{5} - \dots \right]

p = 2 r \pi \left[1 - \left(\frac{1}{2}\right)^2 \varepsilon^2 - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{\varepsilon^4}{3} - \dots - \left(\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}\right)^2 \frac{\varepsilon^{2n}}{2n-1} - \dots \right]


Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0\;

[edit] My Test Area

\int_a^b f(x)\,dx

2x^2+5x+3=0\, x^2-3x=0\, 5x-3=0\,

\lim_{x\rightarrow 0}\frac{\sin(x)}{x} = 1

\sqrt{1-e^2}

\frac{\sqrt{2}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} =  \frac{\sqrt{2} \times \sqrt{3}}{3 \times 3} =  \frac{\sqrt{6}}{9}

x^\frac{1}{n} = \sqrt[n]{x}

27^\frac{1}{3} = \sqrt[3]{27} = 3

x^\frac{m}{n} = \sqrt[n]{x^m}

x^\frac{m}{n} = x^{(m \times \frac{1}{n})} = (x^m)^{\frac{1}{n}} = \sqrt[n]{x^m}

\sqrt{\tfrac{1}{2}} = \sqrt{\tfrac{2}{4}} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}

\sqrt{\tfrac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}

x^\frac{2}{3} = \sqrt[3]{x^2}

10^{\,\!10^{100}}

10^{\,\!10^{10^{1000}}}

{{n!} \over {(n - r)!}} \times {{1} \over {r!}} = {{n!} \over {r!(n - r)!}}

{{n!} \over {r!(n - r)!}} = {n \choose r}

f(k;n,p)={n\choose k}p^k(1-p)^{n-k}

for k=0,1,2,\dots,n and where

{n\choose k}=\frac{n!}{k!(n-k)!}

f(3;10,0.5)={10\choose 3}0.5^3(1-0.5)^{(10-3)}={10\choose 3}0.5^30.5^7

{10\choose 3}=\frac{10!}{3!(10-3)!}=\frac{10!}{3!7!}=120

f(3;10,0.5)=120\times0.5^30.5^7=0.1171875

 P(n,r) = {}^n\!P_r = {}_n\!P_r = \frac{n!}{(n-r)!}

 C(n,r) = {}^n\!C_r = {}_n\!C_r = {n\choose r}=\frac{n!}{r!(n-r)!}

 P(n,r) = \frac{n!}{(n-r)!}.

[edit] Test Area 2

\vec{i} \times \vec{j}=\vec{k}

A hexadecimal multiplication table
A hexadecimal multiplication table

nC_{r}=\frac{n!}{(n-r)!(r!)}

\sum_{k=1}^\infty 10^{-k!} = 0.110001000000000000000001000...

0 < |x-\frac{p}{q}| < \frac{1}{q^n}

A = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\,

C = cos^{-1}(\frac{a^2+b^2-c^2}{2ab})

{{n + r - 1} \choose {r}} = {{(n + r - 1)!} \over {r!(n - 1)!}}

{{n + r - 1} \choose {r}} = {{n + r - 1} \choose {n - 1}} = {{(n + r - 1)!} \over {r!(n - 1)!}}

\varphi = \frac{1}{2} + \frac{\sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}

\varphi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} = 1.618...

\frac{1}{3-\sqrt{2}}

\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{3+\sqrt{2}}{3^2-(\sqrt{2})^2} = \frac{3+\sqrt{2}}{7}

\frac{2-\sqrt{x}}{4-x}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{2^2-(\sqrt{2})^2}{(4-x)(2+\sqrt{x})} = \frac{(4-x)}{(4-x)(2+\sqrt{x})}  = \frac{1}{2+\sqrt{x}}

[edit] Test Area Sets

Help:Displaying_a_formula

f\colon \mathbb{N}\rightarrow\mathbb{N}

f\colon \{1,2,3,...\}\rightarrow\{1,2,3,...\}

f\colon \mathbb{R}\rightarrow\mathbb{R}

f\colon\,x\mapsto x^2

From Set-builder notation

Examples:

\sum_{n=1}^4 (2n+1)

[edit] Test Area Limits

\lim_{x\to1} \frac{x^2-1}{x-1} = 2

\lim_{x\to1} \frac{x^2-1}{x-1} = \lim_{x\to1} \frac{(x-1)(x+1)}{x-1} = \lim_{x\to1} (x+1)

\lim_{x\to1} (x+1) = 1+1 = 2

\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1} = x+1

\lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n = e

\lim_{x\to10} \frac{x}{2}= 5

\lim_{x\to4} \frac{2-\sqrt{x}}{4-x}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}} = \frac{2^2-(\sqrt{x})^2}{(4-x)(2+\sqrt{x})} = \frac{(4-x)}{(4-x)(2+\sqrt{x})}  = \frac{1}{2+\sqrt{x}}

\frac{2-\sqrt{x}}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{x}}

\frac{2^2-(\sqrt{x})^2}{(4-x)(2+\sqrt{x})}

\frac{(4-x)}{(4-x)(2+\sqrt{x})}

\frac{1}{2+\sqrt{x}}

\lim_{x\to4} \frac{2-\sqrt{x}}{4-x} = \lim_{x\to4} \frac{1}{2+\sqrt{x}} = \frac{1}{2+\sqrt{4}} = \frac{1}{4}

[edit] Test Area Derivatives

\frac{2x\Delta x + \Delta x^2}{\Delta x}

\lim_{\Delta x\to0} \frac{2x\Delta x + \Delta x^2}{\Delta x} = \lim_{\Delta x\to0} 2x + \Delta x

\lim_{\Delta x\to0} 2x + \Delta x = 2x

\lim_{\Delta x\to0} \frac{2x\Delta x + \Delta x^2}{\Delta x} = \lim_{\Delta x\to0} \frac{2x\Delta x}{\Delta x} = \lim_{\Delta x\to0} 2x = 2x

\lim_{\Delta x\to0} \frac{3x^2\Delta x + 3x\Delta x^2 + \Delta x^3}{\Delta x} = \lim_{\Delta x\to0} 3x^2 + 3x\Delta x + \Delta x^2 = 3x^2

f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x)-f(x)}{\Delta x}

\frac{dy}{dx} = \frac{f(x+dx)-f(x)}{dx}\,

\frac{dy}{dx}\,

= \frac{f(x+dx)-f(x)}{dx}\,

= \frac{(x+dx)^2 - x^2}{dx}\,

= \frac{x^2 + 2x \cdot dx + dx^2 - x^2}{dx}\,

= \frac{2x \cdot dx + dx^2}{dx}\,

= 2x + dx\,

= 2x\,