User:MathsIsFun
From Wikipedia, the free encyclopedia
|
||||
|
Other
|
||||
|
Contents |
[edit] My Goal
My goal is to make mathematics more accessible and fun for everyone, and a big part of that is to explain mathematics using "easy language", but this requires a balancing act between precision and comprehension.
Let me explain: there is an educational concept called the spiral, which roughly means that a subject comes around again and again, always at a higher level. For example, a young person is taught that multiplication is just repeated addition. But then a year later the subject is revisited and multiplying by negatives is taught, then decimals come along ...
[edit] The Website
And that is why I have developed (Math is Fun, or "Maths is Fun" in British English), to be a place where mathematics can be explained in a more "user-friendly" manner.
And like all people who embark on explaining Science to the general public I must at times leave out details which would only confuse, but it can be very hard to know where to draw the line.
So please forgive me, fellow Wikipedians, when I over-simplify! And correct me gently, but do correct me!
[edit] Contact Details
Use this Contact Form or leave a message on the Math is Fun Forum
[edit] My Test Area Other



![\sqrt[n]{a^m} = (\sqrt[n]{a})^m](../../../../math/4/8/6/4861e5c2b04a209fc89926da6b42a5fc.png)
![\sqrt[3]{27^2} = (\sqrt[3]{27})^2 = 3^2 = 9](../../../../math/c/3/2/c32f95c1679d50dafd8ed27df4c29d57.png)
![\sqrt[3]{4^6} = (4)^\frac{6}{3} = 4^2 = 16](../../../../math/4/e/9/4e9d822c4c1111153d481b40a7c0335f.png)
![\sqrt[n]{a^m} = a^\frac{m}{n}](../../../../math/3/b/0/3b0234682d54453ceee722e89c782c2e.png)
![\sqrt[n]{a} = a^\frac{1}{n}](../../../../math/2/0/0/2009af813099ac7b1bef0f0fb92a7999.png)
![\sqrt[3]{2^3} = 2](../../../../math/5/8/7/5877352f2892dfe372b741f9889a9c37.png)
![\sqrt[3]{-2^3} = -2](../../../../math/4/5/5/45508d5cc9ffb249307fdc5dc82989af.png)
![\sqrt[4]{-2^4} = |-2| = 2](../../../../math/5/0/c/50ca7b49c30d9fa05c574f4a6d6c993b.png)
![5^4=625 \ \ so \ \ 5 = \sqrt[4]{625}](../../../../math/1/1/7/117057c84f7c575ff2c91315cc684cf2.png)
![\sqrt[n]{ab} = \sqrt[n]{a}\cdot\sqrt[n]{b}](../../../../math/6/2/a/62a0208894f4b36cb7f3aa017651baff.png)
![\sqrt[3]{128} = \sqrt[3]{64\cdot2} = \sqrt[3]{64}\cdot\sqrt[3]{2} = 4\sqrt[3]{2}](../../../../math/7/e/5/7e54e8bf3b59eeabc94ee35a96ee9cfc.png)
![\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}](../../../../math/1/f/4/1f4d644990684b5a463e6c935d176c5a.png)
![\sqrt[3]{\frac{1}{64}} = \frac{\sqrt[3]{1}}{\sqrt[3]{64}} = \frac{1}{4}](../../../../math/a/a/3/aa33ffe2d353ab589c49f265fe27483d.png)
![\sqrt[n]{a+b} \neq \sqrt[n]{a}+\sqrt[n]{b}](../../../../math/5/f/4/5f4f1811cc149464009b6cd106b83469.png)
![\sqrt[n]{a-b} \neq \sqrt[n]{a}-\sqrt[n]{b}](../../../../math/5/3/4/534b8c2d7bab023049832dd8dc8be260.png)
![\sqrt[n]{a^n+b^n} \neq a+b](../../../../math/d/e/e/dee872b1b62227339517c2d6c9781f02.png)
![\sqrt[n]{a^n} = a](../../../../math/a/7/3/a73d367ed0ace076492bd5d360b13ed6.png)

![\sqrt[3]{a} \times \sqrt[3]{a} \times \sqrt[3]{a} = a](../../../../math/2/c/8/2c81520a9dbff3c60a45f9a3208120c1.png)
![\underbrace{\sqrt[n]{a} \times \sqrt[n]{a} \times ... \times \sqrt[n]{a}}_{n\ of\ them} = a](../../../../math/8/6/1/861495238fd194e24d19dd98c8cb6558.png)
[edit] My Test Area Geometry




Ellipse perimeter, simple formula:

A better approximation by Ramanujan is:
![p \approx \pi \left[3(r+s) - \sqrt{(3r+s)(r+3s)}\right]\!\,](../../../../math/a/e/e/aeeb0ee2037f39c79a3d3d5240765fc2.png)


![p = 2 r \pi \left[1 - \left(\frac{1}{2}\right)^2 \varepsilon^2 - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{\varepsilon^4}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 \frac{\varepsilon^{6}}{5} - \dots \right]](../../../../math/6/a/b/6ab8f8676d3f2be0f0e6082332750aeb.png)
![p = 2 r \pi \left[1 - \left(\frac{1}{2}\right)^2 \varepsilon^2 - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{\varepsilon^4}{3} - \dots - \left(\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}\right)^2 \frac{\varepsilon^{2n}}{2n-1} - \dots \right]](../../../../math/9/2/9/929e3d3491eb5e3f101d0b3efe9003d1.png)

[edit] My Test Area







![x^\frac{1}{n} = \sqrt[n]{x}](../../../../math/c/7/c/c7caeeb230d7c227e7fdb5f372e1f09e.png)
![27^\frac{1}{3} = \sqrt[3]{27} = 3](../../../../math/6/7/a/67a5fc1bd176e85547f301481e9d9a4b.png)
![x^\frac{m}{n} = \sqrt[n]{x^m}](../../../../math/2/0/9/209fa9e8866443f28f0ffffe20a5e0a0.png)
![x^\frac{m}{n} = x^{(m \times \frac{1}{n})} = (x^m)^{\frac{1}{n}} = \sqrt[n]{x^m}](../../../../math/a/b/2/ab228082dbef44bcf2103bd1611a2289.png)


![x^\frac{2}{3} = \sqrt[3]{x^2}](../../../../math/b/6/e/b6ef4cb990da504824aa07ec9614422a.png)





for
and where







[edit] Test Area 2


= 0.110001000000000000000001000...











[edit] Test Area Sets




From Set-builder notation
Examples:
is the set {0,1},
is the set of all positive real numbers,
is the set of all even natural numbers,
is the set of rational numbers, or numbers that can be written as the ratio of two integers.

[edit] Test Area Limits













[edit] Test Area Derivatives
















